Abstract:The increasing number of cyber threats and rapidly evolving tactics, as well as the high volume of data in recent years, have caused classical machine learning, rules, and signature-based defence strategies to fail, rendering them unable to keep up. An alternative, Quantum Machine Learning (QML), has recently emerged, making use of computations based on quantum mechanics. It offers better encoding and processing of high-dimensional structures for certain problems. This survey provides a comprehensive overview of QML techniques relevant to the domain of security, such as Quantum Neural Networks (QNNs), Quantum Support Vector Machines (QSVMs), Variational Quantum Circuits (VQCs), and Quantum Generative Adversarial Networks (QGANs), and discusses the contributions of this paper in relation to existing research in the field and how it improves over them. It also maps these methods across supervised, unsupervised, and generative learning paradigms, and to core cybersecurity tasks, including intrusion and anomaly detection, malware and botnet classification, and encrypted-traffic analytics. It also discusses their application in the domain of cloud computing security, where QML can enhance secure and scalable operations. Many limitations of QML in the domain of cybersecurity have also been discussed, along with the directions for addressing them.
Abstract:Mission critical (MC) applications such as defense operations, energy management, cybersecurity, and aerospace control require reliable, deterministic, and low-latency decision making under uncertainty. Although the classical Machine Learning (ML) approaches are effective, they often struggle to meet the stringent constraints of robustness, timing, explainability, and safety in the MC domains. Quantum Artificial Intelligence (QAI), the fusion of machine learning and quantum computing (QC), can provide transformative solutions to the challenges faced by classical ML models. In this paper, we provide a comprehensive exploration of QAI for MC systems. We begin with a conceptual background to quantum computing, MC systems, and quantum machine learning (QAI). We then examine the core mechanisms and algorithmic principles of QAI in MC systems, including quantum-enhanced learning pipelines, quantum uncertainty quantification, and quantum explainability frameworks. Subsequently, we discuss key application areas like aerospace, defense, cybersecurity, smart grids, and disaster management, focusing on the role of QA in enhancing fault tolerance, real-time intelligence, and adaptability. We provide an exploration of the positioning of QAI for MC systems in the industry in terms of deployment. We also propose a model for management of quantum resources and scheduling of applications driven by timeliness constraints. We discuss multiple challenges, including trainability limits, data access, and loading bottlenecks, verification of quantum components, and adversarial QAI. Finally, we outline future research directions toward achieving interpretable, scalable, and hardware-feasible QAI models for MC application deployment.