Department of Biomedical Sciences, University of Padova, Padova, Italy and Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council
Abstract:Artificial intelligence (AI) has recently seen transformative breakthroughs in the life sciences, expanding possibilities for researchers to interpret biological information at an unprecedented capacity, with novel applications and advances being made almost daily. In order to maximise return on the growing investments in AI-based life science research and accelerate this progress, it has become urgent to address the exacerbation of long-standing research challenges arising from the rapid adoption of AI methods. We review the increased erosion of trust in AI research outputs, driven by the issues of poor reusability and reproducibility, and highlight their consequent impact on environmental sustainability. Furthermore, we discuss the fragmented components of the AI ecosystem and lack of guiding pathways to best support Open and Sustainable AI (OSAI) model development. In response, this perspective introduces a practical set of OSAI recommendations directly mapped to over 300 components of the AI ecosystem. Our work connects researchers with relevant AI resources, facilitating the implementation of sustainable, reusable and transparent AI. Built upon life science community consensus and aligned to existing efforts, the outputs of this perspective are designed to aid the future development of policy and structured pathways for guiding AI implementation.
Abstract:Modern biology frequently relies on machine learning to provide predictions and improve decision processes. There have been recent calls for more scrutiny on machine learning performance and possible limitations. Here we present a set of community-wide recommendations aiming to help establish standards of machine learning validation in biology. Adopting a structured methods description for machine learning based on DOME (data, optimization, model, evaluation) will allow both reviewers and readers to better understand and assess the performance and limitations of a method or outcome. The recommendations are complemented by a machine learning summary table which can be easily included in the supplementary material of published papers.