Athena Research and Innovation Center, Marousi, Greece
Abstract:Artificial intelligence (AI) has recently seen transformative breakthroughs in the life sciences, expanding possibilities for researchers to interpret biological information at an unprecedented capacity, with novel applications and advances being made almost daily. In order to maximise return on the growing investments in AI-based life science research and accelerate this progress, it has become urgent to address the exacerbation of long-standing research challenges arising from the rapid adoption of AI methods. We review the increased erosion of trust in AI research outputs, driven by the issues of poor reusability and reproducibility, and highlight their consequent impact on environmental sustainability. Furthermore, we discuss the fragmented components of the AI ecosystem and lack of guiding pathways to best support Open and Sustainable AI (OSAI) model development. In response, this perspective introduces a practical set of OSAI recommendations directly mapped to over 300 components of the AI ecosystem. Our work connects researchers with relevant AI resources, facilitating the implementation of sustainable, reusable and transparent AI. Built upon life science community consensus and aligned to existing efforts, the outputs of this perspective are designed to aid the future development of policy and structured pathways for guiding AI implementation.
Abstract:Accurate affiliation matching, which links affiliation strings to standardized organization identifiers, is critical for improving research metadata quality, facilitating comprehensive bibliometric analyses, and supporting data interoperability across scholarly knowledge bases. Existing approaches fail to handle the complexity of affiliation strings that often include mentions of multiple organizations or extraneous information. In this paper, we present AffRo, a novel approach designed to address these challenges, leveraging advanced parsing and disambiguation techniques. We also introduce AffRoDB, an expert-curated dataset to systematically evaluate affiliation matching algorithms, ensuring robust benchmarking. Results demonstrate the effectiveness of AffRp in accurately identifying organizations from complex affiliation strings.