Abstract:Multivariate time series forecasting has drawn increasing attention due to its practical importance. Existing approaches typically adopt either channel-mixing (CM) or channel-independence (CI) strategies. CM strategy can capture inter-variable dependencies but fails to discern variable-specific temporal patterns. CI strategy improves this aspect but fails to fully exploit cross-variable dependencies like CM. Hybrid strategies based on feature fusion offer limited generalization and interpretability. To address these issues, we propose C3RL, a novel representation learning framework that jointly models both CM and CI strategies. Motivated by contrastive learning in computer vision, C3RL treats the inputs of the two strategies as transposed views and builds a siamese network architecture: one strategy serves as the backbone, while the other complements it. By jointly optimizing contrastive and prediction losses with adaptive weighting, C3RL balances representation and forecasting performance. Extensive experiments on seven models show that C3RL boosts the best-case performance rate to 81.4\% for models based on CI strategy and to 76.3\% for models based on CM strategy, demonstrating strong generalization and effectiveness. The code will be available once the paper is accepted.
Abstract:In multivariate time-series forecasting (MTSF), extracting the temporal correlations of the input sequences is crucial. While popular Transformer-based predictive models can perform well, their quadratic computational complexity results in inefficiency and high overhead. The recently emerged Mamba, a selective state space model, has shown promising results in many fields due to its strong temporal feature extraction capabilities and linear computational complexity. However, due to the unilateral nature of Mamba, channel-independent predictive models based on Mamba cannot attend to the relationships among all variables in the manner of Transformer-based models. To address this issue, we combine fast-attention with Mamba to introduce a novel framework named FMamba for MTSF. Technically, we first extract the temporal features of the input variables through an embedding layer, then compute the dependencies among input variables via the fast-attention module. Subsequently, we use Mamba to selectively deal with the input features and further extract the temporal dependencies of the variables through the multi-layer perceptron block (MLP-block). Finally, FMamba obtains the predictive results through the projector, a linear layer. Experimental results on eight public datasets demonstrate that FMamba can achieve state-of-the-art performance while maintaining low computational overhead.