Signal Analysis and Interpretation Lab, University of Southern California, Information Science Institute, University of Southern California
Abstract:Multi-modal learning has emerged as an increasingly promising avenue in vision recognition, driving innovations across diverse domains ranging from media and education to healthcare and transportation. Despite its success, the robustness of multi-modal learning for visual recognition is often challenged by the unavailability of a subset of modalities, especially the visual modality. Conventional approaches to mitigate missing modalities in multi-modal learning rely heavily on algorithms and modality fusion schemes. In contrast, this paper explores the use of text-to-image models to assist multi-modal learning. Specifically, we propose a simple but effective multi-modal learning framework GTI-MM to enhance the data efficiency and model robustness against missing visual modality by imputing the missing data with generative transformers. Using multiple multi-modal datasets with visual recognition tasks, we present a comprehensive analysis of diverse conditions involving missing visual modality in data, including model training. Our findings reveal that synthetic images benefit training data efficiency with visual data missing in training and improve model robustness with visual data missing involving training and testing. Moreover, we demonstrate GTI-MM is effective with lower generation quantity and simple prompt techniques.
Abstract:Primary open-angle glaucoma (POAG) is a chronic and progressive optic nerve condition that results in an acquired loss of optic nerve fibers and potential blindness. The gradual onset of glaucoma results in patients progressively losing their vision without being consciously aware of the changes. To diagnose POAG and determine its severity, patients must undergo a comprehensive dilated eye examination. In this work, we build a framework to rank, compare, and interpret the severity of glaucoma using fundus images. We introduce a siamese-based severity ranking using pairwise n-hidden comparisons. We additionally have a novel approach to explaining why a specific image is deemed more severe than others. Our findings indicate that the proposed severity ranking model surpasses traditional ones in terms of diagnostic accuracy and delivers improved saliency explanations.
Abstract:The lack of contextual information in text data can make the annotation process of text-based emotion classification datasets challenging. As a result, such datasets often contain labels that fail to consider all the relevant emotions in the vocabulary. This misalignment between text inputs and labels can degrade the performance of machine learning models trained on top of them. As re-annotating entire datasets is a costly and time-consuming task that cannot be done at scale, we propose to use the expressive capabilities of large language models to synthesize additional context for input text to increase its alignment with the annotated emotional labels. In this work, we propose a formal definition of textual context to motivate a prompting strategy to enhance such contextual information. We provide both human and empirical evaluation to demonstrate the efficacy of the enhanced context. Our method improves alignment between inputs and their human-annotated labels from both an empirical and human-evaluated standpoint.
Abstract:Interactions involving children span a wide range of important domains from learning to clinical diagnostic and therapeutic contexts. Automated analyses of such interactions are motivated by the need to seek accurate insights and offer scale and robustness across diverse and wide-ranging conditions. Identifying the speech segments belonging to the child is a critical step in such modeling. Conventional child-adult speaker classification typically relies on audio modeling approaches, overlooking visual signals that convey speech articulation information, such as lip motion. Building on the foundation of an audio-only child-adult speaker classification pipeline, we propose incorporating visual cues through active speaker detection and visual processing models. Our framework involves video pre-processing, utterance-level child-adult speaker detection, and late fusion of modality-specific predictions. We demonstrate from extensive experiments that a visually aided classification pipeline enhances the accuracy and robustness of the classification. We show relative improvements of 2.38% and 3.97% in F1 macro score when one face and two faces are visible, respectively.
Abstract:Ubiquitous sensing from wearable devices in the wild holds promise for enhancing human well-being, from diagnosing clinical conditions and measuring stress to building adaptive health promoting scaffolds. But the large volumes of data therein across heterogeneous contexts pose challenges for conventional supervised learning approaches. Representation Learning from biological signals is an emerging realm catalyzed by the recent advances in computational modeling and the abundance of publicly shared databases. The electrocardiogram (ECG) is the primary researched modality in this context, with applications in health monitoring, stress and affect estimation. Yet, most studies are limited by small-scale controlled data collection and over-parameterized architecture choices. We introduce \textbf{WildECG}, a pre-trained state-space model for representation learning from ECG signals. We train this model in a self-supervised manner with 275,000 10s ECG recordings collected in the wild and evaluate it on a range of downstream tasks. The proposed model is a robust backbone for ECG analysis, providing competitive performance on most of the tasks considered, while demonstrating efficacy in low-resource regimes. The code and pre-trained weights are shared publicly at https://github.com/klean2050/tiles_ecg_model.
Abstract:Video summarization remains a huge challenge in computer vision due to the size of the input videos to be summarized. We propose an efficient, language-only video summarizer that achieves competitive accuracy with high data efficiency. Using only textual captions obtained via a zero-shot approach, we train a language transformer model and forego image representations. This method allows us to perform filtration amongst the representative text vectors and condense the sequence. With our approach, we gain explainability with natural language that comes easily for human interpretation and textual summaries of the videos. An ablation study that focuses on modality and data compression shows that leveraging text modality only effectively reduces input data processing while retaining comparable results.
Abstract:Significant advances are being made in speech emotion recognition (SER) using deep learning models. Nonetheless, training SER systems remains challenging, requiring both time and costly resources. Like many other machine learning tasks, acquiring datasets for SER requires substantial data annotation efforts, including transcription and labeling. These annotation processes present challenges when attempting to scale up conventional SER systems. Recent developments in foundational models have had a tremendous impact, giving rise to applications such as ChatGPT. These models have enhanced human-computer interactions including bringing unique possibilities for streamlining data collection in fields like SER. In this research, we explore the use of foundational models to assist in automating SER from transcription and annotation to augmentation. Our study demonstrates that these models can generate transcriptions to enhance the performance of SER systems that rely solely on speech data. Furthermore, we note that annotating emotions from transcribed speech remains a challenging task. However, combining outputs from multiple LLMs enhances the quality of annotations. Lastly, our findings suggest the feasibility of augmenting existing speech emotion datasets by annotating unlabeled speech samples.
Abstract:Advertisement videos (ads) play an integral part in the domain of Internet e-commerce as they amplify the reach of particular products to a broad audience or can serve as a medium to raise awareness about specific issues through concise narrative structures. The narrative structures of advertisements involve several elements like reasoning about the broad content (topic and the underlying message) and examining fine-grained details involving the transition of perceived tone due to the specific sequence of events and interaction among characters. In this work, to facilitate the understanding of advertisements along the three important dimensions of topic categorization, perceived tone transition, and social message detection, we introduce a multimodal multilingual benchmark called MM-AU composed of over 8.4K videos (147 hours) curated from multiple web sources. We explore multiple zero-shot reasoning baselines through the application of large language models on the ads transcripts. Further, we demonstrate that leveraging signals from multiple modalities, including audio, video, and text, in multimodal transformer-based supervised models leads to improved performance compared to unimodal approaches.
Abstract:Traditional music search engines rely on retrieval methods that match natural language queries with music metadata. There have been increasing efforts to expand retrieval methods to consider the audio characteristics of music itself, using queries of various modalities including text, video, and speech. Most approaches aim to match general music semantics to the input queries, while only a few focus on affective qualities. We address the task of retrieving emotionally-relevant music from image queries by proposing a framework for learning an affective alignment between images and music audio. Our approach focuses on learning an emotion-aligned joint embedding space between images and music. This joint embedding space is learned via emotion-supervised contrastive learning, using an adapted cross-modal version of the SupCon loss. We directly evaluate the joint embeddings with cross-modal retrieval tasks (image-to-music and music-to-image) based on emotion labels. In addition, we investigate the generalizability of the learned music embeddings with automatic music tagging as a downstream task. Our experiments show that our approach successfully aligns images and music, and that the learned embedding space is effective for cross-modal retrieval applications.
Abstract:We address the problem of detecting who spoke when in child-inclusive spoken interactions i.e., automatic child-adult speaker classification. Interactions involving children are richly heterogeneous due to developmental differences. The presence of neurodiversity e.g., due to Autism, contributes additional variability. We investigate the impact of additional pre-training with more unlabelled child speech on the child-adult classification performance. We pre-train our model with child-inclusive interactions, following two recent self-supervision algorithms, Wav2vec 2.0 and WavLM, with a contrastive loss objective. We report 9 - 13% relative improvement over the state-of-the-art baseline with regards to classification F1 scores on two clinical interaction datasets involving children with Autism. We also analyze the impact of pre-training under different conditions by evaluating our model on interactions involving different subgroups of children based on various demographic factors.