Abstract:Constrained multi-agent reinforcement learning (MARL) faces a fundamental tension between exploration and safety-constrained optimization. Existing leading approaches, such as Lagrangian methods, typically rely on global penalties or centralized critics that react to violations after they occur, often suppressing exploration and leading to over-conservatism. We propose Co2PO, a novel MARL communication-augmented framework that enables coordination-driven safety through selective, risk-aware communication. Co2PO introduces a shared blackboard architecture for broadcasting positional intent and yield signals, governed by a learned hazard predictor that proactively forecasts potential violations over an extended temporal horizon. By integrating these forecasts into a constrained optimization objective, Co2PO allows agents to anticipate and navigate collective hazards without the performance trade-offs inherent in traditional reactive constraints. We evaluate Co2PO across a suite of complex multi-agent safety benchmarks, where it achieves higher returns compared to leading constrained baselines while converging to cost-compliant policies at deployment. Ablation studies further validate the necessity of risk-triggered communication, adaptive gating, and shared memory components.
Abstract:Accurate decision making in medical imaging requires reasoning over subtle visual differences between confusable conditions, yet most existing approaches rely on nearest neighbor retrieval that returns redundant evidence and reinforces a single hypothesis. We introduce a contrastive, document-aware reference selection framework that constructs compact evidence sets optimized for discrimination rather than similarity by explicitly balancing visual relevance, embedding diversity, and source-level provenance using ROCO embeddings and metadata. While ROCO provides large-scale image-caption pairs, it does not specify how references should be selected for contrastive reasoning, and naive retrieval frequently yields near-duplicate figures from the same document. To address this gap, we release a reproducible reference selection protocol and curated reference bank that enable a systematic study of contrastive retrieval in medical image reasoning. Building on these contrastive evidence sets, we propose Counterfactual-Contrastive Inference, a confidence-aware reasoning framework that performs structured pairwise visual comparisons and aggregates evidence using margin-based decision rules with faithful abstention. On the MediConfusion benchmark, our approach achieves state-of-the-art performance, improving set-level accuracy by nearly 15% relative to prior methods while reducing confusion and improving individual accuracy.
Abstract:Long-form video question answering (VQA) overwhelms current vision-language models (VLMs) because attention and key-value (KV) caches grow with runtime, forcing either expensive inference or near-sighted sliding windows. We introduce CacheFlow, a training-free pipeline that pairs Dynamic Token Dropping (DTD) with a compressive long-term memory. DTD prunes per-patch tokens online via cosine similarity to the previous frame, and surviving tokens are packed into fixed-size blocks. This online, per-frame processing makes our approach fundamentally suited for live streaming VQA. As blocks are processed, each one's keys are summarized by a tiny recurrent encoder to form a retrieval index, while the block's full KV pairs are offloaded and later rehydrated for generation, preserving answer fidelity. At inference, a consensus-based retrieval mechanism retrieves only the Top-K most relevant blocks and attends over both the retrieved and local context for precise, long-range reasoning. CacheFlow is drop-in, architecture-agnostic, and requires no fine-tuning. Experiments on both offline and streaming VQA benchmarks demonstrate that CacheFlow outperforms current strong baselines, while processing up to 87% less tokens. Our dual approach enables VLMs to be both efficient and context-aware, paving the way for practical long-form video understanding.


Abstract:Advances in artificial intelligence (AI) present significant risks and opportunities, requiring improved governance to mitigate societal harms and promote equitable benefits. Current incentive structures and regulatory delays may hinder responsible AI development and deployment, particularly in light of the transformative potential of large language models (LLMs). To address these challenges, we propose developing the following three contributions: (1) a large multimodal text and economic-timeseries foundation model that integrates economic and natural language policy data for enhanced forecasting and decision-making, (2) algorithmic mechanisms for eliciting diverse and representative perspectives, enabling the creation of data-driven public policy recommendations, and (3) an AI-driven web platform for supporting transparent, inclusive, and data-driven policymaking.