Accurate decision making in medical imaging requires reasoning over subtle visual differences between confusable conditions, yet most existing approaches rely on nearest neighbor retrieval that returns redundant evidence and reinforces a single hypothesis. We introduce a contrastive, document-aware reference selection framework that constructs compact evidence sets optimized for discrimination rather than similarity by explicitly balancing visual relevance, embedding diversity, and source-level provenance using ROCO embeddings and metadata. While ROCO provides large-scale image-caption pairs, it does not specify how references should be selected for contrastive reasoning, and naive retrieval frequently yields near-duplicate figures from the same document. To address this gap, we release a reproducible reference selection protocol and curated reference bank that enable a systematic study of contrastive retrieval in medical image reasoning. Building on these contrastive evidence sets, we propose Counterfactual-Contrastive Inference, a confidence-aware reasoning framework that performs structured pairwise visual comparisons and aggregates evidence using margin-based decision rules with faithful abstention. On the MediConfusion benchmark, our approach achieves state-of-the-art performance, improving set-level accuracy by nearly 15% relative to prior methods while reducing confusion and improving individual accuracy.