Abstract:Low-precision streaming PCA estimates the top principal component in a streaming setting under limited precision. We establish an information-theoretic lower bound on the quantization resolution required to achieve a target accuracy for the leading eigenvector. We study Oja's algorithm for streaming PCA under linear and nonlinear stochastic quantization. The quantized variants use unbiased stochastic quantization of the weight vector and the updates. Under mild moment and spectral-gap assumptions on the data distribution, we show that a batched version achieves the lower bound up to logarithmic factors under both schemes. This leads to a nearly dimension-free quantization error in the nonlinear quantization setting. Empirical evaluations on synthetic streams validate our theoretical findings and demonstrate that our low-precision methods closely track the performance of standard Oja's algorithm.
Abstract:We propose a novel statistical inference framework for streaming principal component analysis (PCA) using Oja's algorithm, enabling the construction of confidence intervals for individual entries of the estimated eigenvector. Most existing works on streaming PCA focus on providing sharp sin-squared error guarantees. Recently, there has been some interest in uncertainty quantification for the sin-squared error. However, uncertainty quantification or sharp error guarantees for entries of the estimated eigenvector in the streaming setting remains largely unexplored. We derive a sharp Bernstein-type concentration bound for elements of the estimated vector matching the optimal error rate up to logarithmic factors. We also establish a Central Limit Theorem for a suitably centered and scaled subset of the entries. To efficiently estimate the coordinate-wise variance, we introduce a provably consistent subsampling algorithm that leverages the median-of-means approach, empirically achieving similar accuracy to multiplier bootstrap methods while being significantly more computationally efficient. Numerical experiments demonstrate its effectiveness in providing reliable uncertainty estimates with a fraction of the computational cost of existing methods.



Abstract:We consider the problem of privately estimating a parameter $\mathbb{E}[h(X_1,\dots,X_k)]$, where $X_1$, $X_2$, $\dots$, $X_k$ are i.i.d. data from some distribution and $h$ is a permutation-invariant function. Without privacy constraints, standard estimators are U-statistics, which commonly arise in a wide range of problems, including nonparametric signed rank tests, symmetry testing, uniformity testing, and subgraph counts in random networks, and can be shown to be minimum variance unbiased estimators under mild conditions. Despite the recent outpouring of interest in private mean estimation, privatizing U-statistics has received little attention. While existing private mean estimation algorithms can be applied to obtain confidence intervals, we show that they can lead to suboptimal private error, e.g., constant-factor inflation in the leading term, or even $\Theta(1/n)$ rather than $O(1/n^2)$ in degenerate settings. To remedy this, we propose a new thresholding-based approach using \emph{local H\'ajek projections} to reweight different subsets of the data. This leads to nearly optimal private error for non-degenerate U-statistics and a strong indication of near-optimality for degenerate U-statistics.
Abstract:The $k$-principal component analysis ($k$-PCA) problem is a fundamental algorithmic primitive that is widely-used in data analysis and dimensionality reduction applications. In statistical settings, the goal of $k$-PCA is to identify a top eigenspace of the covariance matrix of a distribution, which we only have implicit access to via samples. Motivated by these implicit settings, we analyze black-box deflation methods as a framework for designing $k$-PCA algorithms, where we model access to the unknown target matrix via a black-box $1$-PCA oracle which returns an approximate top eigenvector, under two popular notions of approximation. Despite being arguably the most natural reduction-based approach to $k$-PCA algorithm design, such black-box methods, which recursively call a $1$-PCA oracle $k$ times, were previously poorly-understood. Our main contribution is significantly sharper bounds on the approximation parameter degradation of deflation methods for $k$-PCA. For a quadratic form notion of approximation we term ePCA (energy PCA), we show deflation methods suffer no parameter loss. For an alternative well-studied approximation notion we term cPCA (correlation PCA), we tightly characterize the parameter regimes where deflation methods are feasible. Moreover, we show that in all feasible regimes, $k$-cPCA deflation algorithms suffer no asymptotic parameter loss for any constant $k$. We apply our framework to obtain state-of-the-art $k$-PCA algorithms robust to dataset contamination, improving prior work both in sample complexity and approximation quality.