



Abstract:Accurate Angle-of-arrival (AoA) estimation is essential for next-generation wireless communication systems to enable reliable beamforming, high-precision localization, and integrated sensing. Unfortunately, classical high-resolution techniques require multi-element arrays and extensive snapshot collection, while generic Machine Learning (ML) approaches often yield black-box models that lack physical interpretability. To address these limitations, we propose a Symbolic Regression (SR)-based ML framework. Namely, Symbolic Regression-based Angle of Arrival and Beam Pattern Estimator (SABER), a constrained symbolic-regression framework that automatically discovers closed-form beam pattern and AoA models from path loss measurements with interpretability. SABER achieves high accuracy while bridging the gap between opaque ML methods and interpretable physics-driven estimators. First, we validate our approach in a controlled free-space anechoic chamber, showing that both direct inversion of the known $\cos^n$ beam and a low-order polynomial surrogate achieve sub-0.5 degree Mean Absolute Error (MAE). A purely unconstrained SR method can further reduce the error of the predicted angles, but produces complex formulas that lack physical insight. Then, we implement the same SR-learned inversions in a real-world, Reconfigurable Intelligent Surface (RIS)-aided indoor testbed. SABER and unconstrained SR models accurately recover the true AoA with near-zero error. Finally, we benchmark SABER against the Cram\'er-Rao Lower Bounds (CRLBs). Our results demonstrate that SABER is an interpretable and accurate alternative to state-of-the-art and black-box ML-based methods for AoA estimation.
Abstract:Modeling propagation is the cornerstone for designing and optimizing next-generation wireless systems, with a particular emphasis on 5G and beyond era. Traditional modeling methods have long relied on statistic-based techniques to characterize propagation behavior across different environments. With the expansion of wireless communication systems, there is a growing demand for methods that guarantee the accuracy and interoperability of modeling. Artificial intelligence (AI)-based techniques, in particular, are increasingly being adopted to overcome this challenge, although the interpretability is not assured with most of these methods. Inspired by recent advancements in AI, this paper proposes a novel approach that accelerates the discovery of path loss models while maintaining interpretability. The proposed method automates the model formulation, evaluation, and refinement, facilitating model discovery. We evaluate two techniques: one based on Deep Symbolic Regression, offering full interpretability, and the second based on Kolmogorov-Arnold Networks, providing two levels of interpretability. Both approaches are evaluated on two synthetic and two real-world datasets. Our results show that Kolmogorov-Arnold Networks achieve R^2 values close to 1 with minimal prediction error, while Deep Symbolic Regression generates compact models with moderate accuracy. Moreover, on the selected examples, we demonstrate that automated methods outperform traditional methods, achieving up to 75% reduction in prediction errors, offering accurate and explainable solutions with potential to increase the efficiency of discovering next-generation path loss models.
Abstract:Artificial intelligence (AI)coupled with existing Internet of Things (IoT) enables more streamlined and autonomous operations across various economic sectors. Consequently, the paradigm of Artificial Intelligence of Things (AIoT) having AI techniques at its core implies additional energy and carbon costs that may become significant with more complex neural architectures. To better understand the energy and Carbon Footprint (CF) of some AIoT components, very recent studies employ conventional metrics. However, these metrics are not designed to capture energy efficiency aspects of inference. In this paper, we propose a new metric, the Energy Cost of AIoT Lifecycle (eCAL) to capture the overall energy cost of inference over the lifecycle of an AIoT system. We devise a new methodology for determining eCAL of an AIoT system by analyzing the complexity of data manipulation in individual components involved in the AIoT lifecycle and derive the overall and per bit energy consumption. With eCAL we show that the better a model is and the more it is used, the more energy efficient an inference is. For an example AIoT configuration, eCAL for making $100$ inferences is $1.43$ times higher than for $1000$ inferences. We also evaluate the CF of the AIoT system by calculating the equivalent CO$_{2}$ emissions based on the energy consumption and the Carbon Intensity (CI) across different countries. Using 2023 renewable data, our analysis reveals that deploying an AIoT system in Germany results in emitting $4.62$ times higher CO$_2$ than in Finland, due to latter using more low-CI energy sources.