Abstract:Radiology reporting is a complex task that requires detailed image understanding, integration of multiple inputs, including comparison with prior imaging, and precise language generation. This makes it ideal for the development and use of generative multimodal models. Here, we extend report generation to include the localisation of individual findings on the image - a task we call grounded report generation. Prior work indicates that grounding is important for clarifying image understanding and interpreting AI-generated text. Therefore, grounded reporting stands to improve the utility and transparency of automated report drafting. To enable evaluation of grounded reporting, we propose a novel evaluation framework - RadFact - leveraging the reasoning capabilities of large language models (LLMs). RadFact assesses the factuality of individual generated sentences, as well as correctness of generated spatial localisations when present. We introduce MAIRA-2, a large multimodal model combining a radiology-specific image encoder with a LLM, and trained for the new task of grounded report generation on chest X-rays. MAIRA-2 uses more comprehensive inputs than explored previously: the current frontal image, the current lateral image, the prior frontal image and prior report, as well as the Indication, Technique and Comparison sections of the current report. We demonstrate that these additions significantly improve report quality and reduce hallucinations, establishing a new state of the art on findings generation (without grounding) on MIMIC-CXR while demonstrating the feasibility of grounded reporting as a novel and richer task.
Abstract:Small Language Models (SLMs) have shown remarkable performance in general domain language understanding, reasoning and coding tasks, but their capabilities in the medical domain, particularly concerning radiology text, is less explored. In this study, we investigate the application of SLMs for general radiology knowledge specifically question answering related to understanding of symptoms, radiological appearances of findings, differential diagnosis, assessing prognosis, and suggesting treatments w.r.t diseases pertaining to different organ systems. Additionally, we explore the utility of SLMs in handling text-related tasks with respect to radiology reports within AI-driven radiology workflows. We fine-tune Phi-2, a SLM with 2.7 billion parameters using high-quality educational content from Radiopaedia, a collaborative online radiology resource. The resulting language model, RadPhi-2-Base, exhibits the ability to address general radiology queries across various systems (e.g., chest, cardiac). Furthermore, we investigate Phi-2 for instruction tuning, enabling it to perform specific tasks. By fine-tuning Phi-2 on both general domain tasks and radiology-specific tasks related to chest X-ray reports, we create Rad-Phi2. Our empirical results reveal that Rad-Phi2 Base and Rad-Phi2 perform comparably or even outperform larger models such as Mistral-7B-Instruct-v0.2 and GPT-4 providing concise and precise answers. In summary, our work demonstrates the feasibility and effectiveness of utilizing SLMs in radiology workflows both for knowledge related queries as well as for performing specific tasks related to radiology reports thereby opening up new avenues for enhancing the quality and efficiency of radiology practice.
Abstract:We present a radiology-specific multimodal model for the task for generating radiological reports from chest X-rays (CXRs). Our work builds on the idea that large language model(s) can be equipped with multimodal capabilities through alignment with pre-trained vision encoders. On natural images, this has been shown to allow multimodal models to gain image understanding and description capabilities. Our proposed model (MAIRA-1) leverages a CXR-specific image encoder in conjunction with a fine-tuned large language model based on Vicuna-7B, and text-based data augmentation, to produce reports with state-of-the-art quality. In particular, MAIRA-1 significantly improves on the radiologist-aligned RadCliQ metric and across all lexical metrics considered. Manual review of model outputs demonstrates promising fluency and accuracy of generated reports while uncovering failure modes not captured by existing evaluation practices. More information and resources can be found on the project website: https://aka.ms/maira.