Abstract:Multi-object video motion transfer poses significant challenges for Diffusion Transformer (DiT) architectures due to inherent motion entanglement and lack of object-level control. We present MultiMotion, a novel unified framework that overcomes these limitations. Our core innovation is Maskaware Attention Motion Flow (AMF), which utilizes SAM2 masks to explicitly disentangle and control motion features for multiple objects within the DiT pipeline. Furthermore, we introduce RectPC, a high-order predictor-corrector solver for efficient and accurate sampling, particularly beneficial for multi-entity generation. To facilitate rigorous evaluation, we construct the first benchmark dataset specifically for DiT-based multi-object motion transfer. MultiMotion demonstrably achieves precise, semantically aligned, and temporally coherent motion transfer for multiple distinct objects, maintaining DiT's high quality and scalability. The code is in the supp.
Abstract:With the growing demands of AI-generated content (AIGC), the need for high-quality, diverse, and scalable data has become increasingly crucial. However, collecting large-scale real-world data remains costly and time-consuming, hindering the development of downstream applications. While some works attempt to collect task-specific data via a rendering process, most approaches still rely on manual scene construction, limiting their scalability and accuracy. To address these challenges, we propose Follow-Your-Instruction, a Multimodal Large Language Model (MLLM)-driven framework for automatically synthesizing high-quality 2D, 3D, and 4D data. Our \textbf{Follow-Your-Instruction} first collects assets and their associated descriptions through multimodal inputs using the MLLM-Collector. Then it constructs 3D layouts, and leverages Vision-Language Models (VLMs) for semantic refinement through multi-view scenes with the MLLM-Generator and MLLM-Optimizer, respectively. Finally, it uses MLLM-Planner to generate temporally coherent future frames. We evaluate the quality of the generated data through comprehensive experiments on the 2D, 3D, and 4D generative tasks. The results show that our synthetic data significantly boosts the performance of existing baseline models, demonstrating Follow-Your-Instruction's potential as a scalable and effective data engine for generative intelligence.