Academia Sinica
Abstract:Randomized smoothing is currently the state-of-the-art method that provides certified robustness for deep neural networks. However, it often cannot achieve an adequate certified region on real-world datasets. One way to obtain a larger certified region is to use an input-specific algorithm instead of using a fixed Gaussian filter for all data points. Several methods based on this idea have been proposed, but they either suffer from high computational costs or gain marginal improvement in certified radius. In this work, we show that by exploiting the quasiconvex problem structure, we can find the optimal certified radii for most data points with slight computational overhead. This observation leads to an efficient and effective input-specific randomized smoothing algorithm. We conduct extensive experiments and empirical analysis on Cifar10 and ImageNet. The results show that the proposed method significantly enhances the certified radii with low computational overhead.
Abstract:Fair Active Learning (FAL) utilized active learning techniques to achieve high model performance with limited data and to reach fairness between sensitive groups (e.g., genders). However, the impact of the adversarial attack, which is vital for various safety-critical machine learning applications, is not yet addressed in FAL. Observing this, we introduce a novel task, Fair Robust Active Learning (FRAL), integrating conventional FAL and adversarial robustness. FRAL requires ML models to leverage active learning techniques to jointly achieve equalized performance on benign data and equalized robustness against adversarial attacks between groups. In this new task, previous FAL methods generally face the problem of unbearable computational burden and ineffectiveness. Therefore, we develop a simple yet effective FRAL strategy by Joint INconsistency (JIN). To efficiently find samples that can boost the performance and robustness of disadvantaged groups for labeling, our method exploits the prediction inconsistency between benign and adversarial samples as well as between standard and robust models. Extensive experiments under diverse datasets and sensitive groups demonstrate that our method not only achieves fairer performance on benign samples but also obtains fairer robustness under white-box PGD attacks compared with existing active learning and FAL baselines. We are optimistic that FRAL would pave a new path for developing safe and robust ML research and applications such as facial attribute recognition in biometrics systems.
Abstract:Malicious attackers can generate targeted adversarial examples by imposing human-imperceptible noise on images, forcing neural network models to produce specific incorrect outputs. With cross-model transferable adversarial examples, the vulnerability of neural networks remains even if the model information is kept secret from the attacker. Recent studies have shown the effectiveness of ensemble-based methods in generating transferable adversarial examples. However, existing methods fall short under the more challenging scenario of creating targeted attacks transferable among distinct models. In this work, we propose Diversified Weight Pruning (DWP) to further enhance the ensemble-based methods by leveraging the weight pruning method commonly used in model compression. Specifically, we obtain multiple diverse models by a random weight pruning method. These models preserve similar accuracies and can serve as additional models for ensemble-based methods, yielding stronger transferable targeted attacks. Experiments on ImageNet-Compatible Dataset under the more challenging scenarios are provided: transferring to distinct architectures and to adversarially trained models. The results show that our proposed DWP improves the targeted attack success rates with up to 4.1% and 8.0% on the combination of state-of-the-art methods, respectively
Abstract:Much literature has shown that prompt-based learning is an efficient method to make use of the large pre-trained language model. Recent works also exhibit the possibility of steering a chatbot's output by plugging in an appropriate prompt. Gradient-based methods are often used to perturb the prompts. However, some language models are not even available to the public. In this work, we first explored the combination of prompting and reinforcement learning (RL) to steer models' generation without accessing any of the models' parameters. Second, to reduce the training effort and enhance the generalizability to the unseen task, we apply multi-task learning to make the model learn to generalize to new tasks better. The experiment results show that our proposed method can successfully control several state-of-the-art (SOTA) dialogue models without accessing their parameters. Furthermore, the model demonstrates the strong ability to quickly adapt to an unseen task in fewer steps than the baseline model.
Abstract:Deep learning models are being integrated into a wide range of high-impact, security-critical systems, from self-driving cars to medical diagnosis. However, recent research has demonstrated that many of these deep learning architectures are vulnerable to adversarial attacks--highlighting the vital need for defensive techniques to detect and mitigate these attacks before they occur. To combat these adversarial attacks, we developed UnMask, an adversarial detection and defense framework based on robust feature alignment. The core idea behind UnMask is to protect these models by verifying that an image's predicted class ("bird") contains the expected robust features (e.g., beak, wings, eyes). For example, if an image is classified as "bird", but the extracted features are wheel, saddle and frame, the model may be under attack. UnMask detects such attacks and defends the model by rectifying the misclassification, re-classifying the image based on its robust features. Our extensive evaluation shows that UnMask (1) detects up to 96.75% of attacks, with a false positive rate of 9.66% and (2) defends the model by correctly classifying up to 93% of adversarial images produced by the current strongest attack, Projected Gradient Descent, in the gray-box setting. UnMask provides significantly better protection than adversarial training across 8 attack vectors, averaging 31.18% higher accuracy. Our proposed method is architecture agnostic and fast. We open source the code repository and data with this paper: https://github.com/unmaskd/unmask.
Abstract:In this talk we describe our content-preserving attack on object detectors, ShapeShifter, and demonstrate how to evaluate this threat in realistic scenarios. We describe how we use CARLA, a realistic urban driving simulator, to create these scenarios, and how we use ShapeShifter to generate content-preserving attacks against those scenarios.
Abstract:Given the ability to directly manipulate image pixels in the digital input space, an adversary can easily generate imperceptible perturbations to fool a Deep Neural Network (DNN) image classifier, as demonstrated in prior work. In this work, we propose ShapeShifter, an attack that tackles the more challenging problem of crafting physical adversarial perturbations to fool image-based object detectors like Faster R-CNN. Attacking an object detector is more difficult than attacking an image classifier, as it needs to mislead the classification results in multiple bounding boxes with different scales. Extending the digital attack to the physical world adds another layer of difficulty, because it requires the perturbation to be robust enough to survive real-world distortions due to different viewing distances and angles, lighting conditions, and camera limitations. We show that the Expectation over Transformation technique, which was originally proposed to enhance the robustness of adversarial perturbations in image classification, can be successfully adapted to the object detection setting. ShapeShifter can generate adversarially perturbed stop signs that are consistently mis-detected by Faster R-CNN as other objects, posing a potential threat to autonomous vehicles and other safety-critical computer vision systems.
Abstract:Adversarial machine learning research has recently demonstrated the feasibility to confuse automatic speech recognition (ASR) models by introducing acoustically imperceptible perturbations to audio samples. To help researchers and practitioners gain better understanding of the impact of such attacks, and to provide them with tools to help them more easily evaluate and craft strong defenses for their models, we present ADAGIO, the first tool designed to allow interactive experimentation with adversarial attacks and defenses on an ASR model in real time, both visually and aurally. ADAGIO incorporates AMR and MP3 audio compression techniques as defenses, which users can interactively apply to attacked audio samples. We show that these techniques, which are based on psychoacoustic principles, effectively eliminate targeted attacks, reducing the attack success rate from 92.5% to 0%. We will demonstrate ADAGIO and invite the audience to try it on the Mozilla Common Voice dataset.
Abstract:The rapidly growing body of research in adversarial machine learning has demonstrated that deep neural networks (DNNs) are highly vulnerable to adversarially generated images. This underscores the urgent need for practical defense that can be readily deployed to combat attacks in real-time. Observing that many attack strategies aim to perturb image pixels in ways that are visually imperceptible, we place JPEG compression at the core of our proposed Shield defense framework, utilizing its capability to effectively "compress away" such pixel manipulation. To immunize a DNN model from artifacts introduced by compression, Shield "vaccinates" a model by re-training it with compressed images, where different compression levels are applied to generate multiple vaccinated models that are ultimately used together in an ensemble defense. On top of that, Shield adds an additional layer of protection by employing randomization at test time that compresses different regions of an image using random compression levels, making it harder for an adversary to estimate the transformation performed. This novel combination of vaccination, ensembling, and randomization makes Shield a fortified multi-pronged protection. We conducted extensive, large-scale experiments using the ImageNet dataset, and show that our approaches eliminate up to 94% of black-box attacks and 98% of gray-box attacks delivered by the recent, strongest attacks, such as Carlini-Wagner's L2 and DeepFool. Our approaches are fast and work without requiring knowledge about the model.
Abstract:Deep neural networks (DNNs) have achieved great success in solving a variety of machine learning (ML) problems, especially in the domain of image recognition. However, recent research showed that DNNs can be highly vulnerable to adversarially generated instances, which look seemingly normal to human observers, but completely confuse DNNs. These adversarial samples are crafted by adding small perturbations to normal, benign images. Such perturbations, while imperceptible to the human eye, are picked up by DNNs and cause them to misclassify the manipulated instances with high confidence. In this work, we explore and demonstrate how systematic JPEG compression can work as an effective pre-processing step in the classification pipeline to counter adversarial attacks and dramatically reduce their effects (e.g., Fast Gradient Sign Method, DeepFool). An important component of JPEG compression is its ability to remove high frequency signal components, inside square blocks of an image. Such an operation is equivalent to selective blurring of the image, helping remove additive perturbations. Further, we propose an ensemble-based technique that can be constructed quickly from a given well-performing DNN, and empirically show how such an ensemble that leverages JPEG compression can protect a model from multiple types of adversarial attacks, without requiring knowledge about the model.