Abstract:We present a cooperative aerial-ground search-and-rescue (SAR) framework that pairs two unmanned aerial vehicles (UAVs) with an unmanned ground vehicle (UGV) to achieve rapid victim localization and obstacle-aware navigation in unknown environments. We dub this framework Guided Long-horizon Integrated Drone Escort (GLIDE), highlighting the UGV's reliance on UAV guidance for long-horizon planning. In our framework, a goal-searching UAV executes real-time onboard victim detection and georeferencing to nominate goals for the ground platform, while a terrain-scouting UAV flies ahead of the UGV's planned route to provide mid-level traversability updates. The UGV fuses aerial cues with local sensing to perform time-efficient A* planning and continuous replanning as information arrives. Additionally, we present a hardware demonstration (using a GEM e6 golf cart as the UGV and two X500 UAVs) to evaluate end-to-end SAR mission performance and include simulation ablations to assess the planning stack in isolation from detection. Empirical results demonstrate that explicit role separation across UAVs, coupled with terrain scouting and guided planning, improves reach time and navigation safety in time-critical SAR missions.
Abstract:The integration of autonomous mobile robots (AMRs) in industrial environments, particularly warehouses, has revolutionized logistics and operational efficiency. However, ensuring the safety of human workers in dynamic, shared spaces remains a critical challenge. This work proposes a novel methodology that leverages control barrier functions (CBFs) to enhance safety in warehouse navigation. By integrating learning-based CBFs with the Open Robotics Middleware Framework (OpenRMF), the system achieves adaptive and safety-enhanced controls in multi-robot, multi-agent scenarios. Experiments conducted using various robot platforms demonstrate the efficacy of the proposed approach in avoiding static and dynamic obstacles, including human pedestrians. Our experiments evaluate different scenarios in which the number of robots, robot platforms, speed, and number of obstacles are varied, from which we achieve promising performance.