Abstract:In response to the increasing use of interactive artificial intelligence, the demand for the capacity to handle complex questions has increased. Multi-hop question generation aims to generate complex questions that requires multi-step reasoning over several documents. Previous studies have predominantly utilized end-to-end models, wherein questions are decoded based on the representation of context documents. However, these approaches lack the ability to explain the reasoning process behind the generated multi-hop questions. Additionally, the question rewriting approach, which incrementally increases the question complexity, also has limitations due to the requirement of labeling data for intermediate-stage questions. In this paper, we introduce an end-to-end question rewriting model that increases question complexity through sequential rewriting. The proposed model has the advantage of training with only the final multi-hop questions, without intermediate questions. Experimental results demonstrate the effectiveness of our model in generating complex questions, particularly 3- and 4-hop questions, which are appropriately paired with input answers. We also prove that our model logically and incrementally increases the complexity of questions, and the generated multi-hop questions are also beneficial for training question answering models.
Abstract:Conversational question answering (CQA) facilitates an incremental and interactive understanding of a given context, but building a CQA system is difficult for many domains due to the problem of data scarcity. In this paper, we introduce a novel method to synthesize data for CQA with various question types, including open-ended, closed-ended, and unanswerable questions. We design a different generation flow for each question type and effectively combine them in a single, shared framework. Moreover, we devise a hierarchical answerability classification (hierarchical AC) module that improves quality of the synthetic data while acquiring unanswerable questions. Manual inspections show that synthetic data generated with our framework have characteristics very similar to those of human-generated conversations. Across four domains, CQA systems trained on our synthetic data indeed show good performance close to the systems trained on human-annotated data.
Abstract:Conversational question--answer generation is a task that automatically generates a large-scale conversational question answering dataset based on input passages. In this paper, we introduce a novel framework that extracts question-worthy phrases from a passage and then generates corresponding questions considering previous conversations. In particular, our framework revises the extracted answers after generating questions so that answers exactly match paired questions. Experimental results show that our simple answer revision approach leads to significant improvement in the quality of synthetic data. Moreover, we prove that our framework can be effectively utilized for domain adaptation of conversational question answering.