Abstract:The Internet has not only digitized but also democratized information access across the globe. This gradual but path-breaking move to online information propagation has resulted in search engines playing an increasingly prominent role in shaping access to human knowledge. When an Internet user enters a query, the search engine sorts through the hundreds of billions of possible webpages to determine what to show. Google dominates the search engine market, with Google Search surpassing 80% market share globally every year of the last decade. Only in Russia and China do Google competitors claim more market share, with approximately 60% of Internet users in Russia preferring Yandex (compared to 40% in favor of Google) and more than 80% of China's Internet users accessing Baidu as of 2022. Notwithstanding this long-standing regional variation in Internet search providers, there is limited research showing how these providers compare in terms of propagating state-sponsored information. Our study fills this research gap by focusing on Russian cyberspace and examining how Google and Yandex's search algorithms rank content from Russian state-controlled media (hereon, RSM) outlets. This question is timely and of practical interest given widespread reports indicating that RSM outlets have actively engaged in promoting Kremlin propaganda in the lead-up to, and in the aftermath of, the Russian invasion of Ukraine in February 2022.
Abstract:Granger causality is a widely-used criterion for analyzing interactions in large-scale networks. As most physical interactions are inherently nonlinear, we consider the problem of inferring the existence of pairwise Granger causality between nonlinearly interacting stochastic processes from their time series measurements. Our proposed approach relies on modeling the embedded nonlinearities in the measurements using a component-wise time series prediction model based on Statistical Recurrent Units (SRUs). We make a case that the network topology of Granger causal relations is directly inferrable from a structured sparse estimate of the internal parameters of the SRU networks trained to predict the processes$'$ time series measurements. We propose a variant of SRU, called economy-SRU, which, by design has considerably fewer trainable parameters, and therefore less prone to overfitting. The economy-SRU computes a low-dimensional sketch of its high-dimensional hidden state in the form of random projections to generate the feedback for its recurrent processing. Additionally, the internal weight parameters of the economy-SRU are strategically regularized in a group-wise manner to facilitate the proposed network in extracting meaningful predictive features that are highly time-localized to mimic real-world causal events. Extensive experiments are carried out to demonstrate that the proposed economy-SRU based time series prediction model outperforms the MLP, LSTM and attention-gated CNN-based time series models considered previously for inferring Granger causality.
Abstract:This work proposes a decentralized, iterative, Bayesian algorithm called CB-DSBL for in-network estimation of multiple jointly sparse vectors by a network of nodes, using noisy and underdetermined linear measurements. The proposed algorithm exploits the network wide joint sparsity of the un- known sparse vectors to recover them from significantly fewer number of local measurements compared to standalone sparse signal recovery schemes. To reduce the amount of inter-node communication and the associated overheads, the nodes exchange messages with only a small subset of their single hop neighbors. Under this communication scheme, we separately analyze the convergence of the underlying Alternating Directions Method of Multipliers (ADMM) iterations used in our proposed algorithm and establish its linear convergence rate. The findings from the convergence analysis of decentralized ADMM are used to accelerate the convergence of the proposed CB-DSBL algorithm. Using Monte Carlo simulations, we demonstrate the superior signal reconstruction as well as support recovery performance of our proposed algorithm compared to existing decentralized algorithms: DRL-1, DCOMP and DCSP.