Abstract:Predicting which hypothetical inorganic crystals can be experimentally realized remains a central challenge in accelerating materials discovery. SyntheFormer is a positive-unlabeled framework that learns synthesizability directly from crystal structure, combining a Fourier-transformed crystal periodicity (FTCP) representation with hierarchical feature extraction, Random-Forest feature selection, and a compact deep MLP classifier. The model is trained on historical data from 2011 through 2018 and evaluated prospectively on future years from 2019 to 2025, where the positive class constitutes only 1.02 per cent of samples. Under this temporally separated evaluation, SyntheFormer achieves a test area under the ROC curve of 0.735 and, with dual-threshold calibration, attains high-recall screening with 97.6 per cent recall at 94.2 per cent coverage, which minimizes missed opportunities while preserving discriminative power. Crucially, the model recovers experimentally confirmed metastable compounds that lie far from the convex hull and simultaneously assigns low scores to many thermodynamically stable yet unsynthesized candidates, demonstrating that stability alone is insufficient to predict experimental attainability. By aligning structure-aware representation with uncertainty-aware decision rules, SyntheFormer provides a practical route to prioritize synthesis targets and focus laboratory effort on the most promising new inorganic materials.
Abstract:Analyzing the human factors behind aviation accidents is crucial for preventing future incidents, yet traditional methods using the Human Factors Analysis and Classification System (HFACS) are limited by scalability and consistency. To address this, we introduce an automated HFACS classification framework for aviation safety analysis that utilizes Reinforcement Learning with Group Relative Policy Optimization (GRPO) to fine-tune a Llama-3.1 8B language model. Our approach incorporates a multi-component reward system tailored for aviation safety analysis and integrates synthetic data generation to overcome class imbalance in accident datasets. The resulting GRPO-optimized model achieved noticeable performance gains, including a 350% increase in exact match accuracy (from 0.0400 to 0.1800) and an improved partial match accuracy of 0.8800. Significantly, our specialized model outperforms state-of-the-art LLMs (Large Language Models), including GPT-5-mini and Gemini-2.5-fiash, on key metrics. This research also proposes exact match accuracy in multi-label HFACS classification problem as a new benchmarking methodology to evaluate the advanced reasoning capabilities of language models. Ultimately, our work validates that smaller, domain-optimized models can provide a computationally efficient and better solution for critical safety analysis. This approach makes powerful, low-latency deployment on resource-constrained edge devices feasible.
Abstract:Large Language Models (LLMs) are increasingly augmented with external tools through standardized interfaces like the Model Context Protocol (MCP). However, current MCP implementations face critical limitations: they typically require local process execution through STDIO transports, making them impractical for resource-constrained environments like mobile devices, web browsers, and edge computing. We present MCP Bridge, a lightweight RESTful proxy that connects to multiple MCP servers and exposes their capabilities through a unified API. Unlike existing solutions, MCP Bridge is fully LLM-agnostic, supporting any backend regardless of vendor. The system implements a risk-based execution model with three security levels standard execution, confirmation workflow, and Docker isolation while maintaining backward compatibility with standard MCP clients. Complementing this server-side infrastructure is a Python based MCP Gemini Agent that facilitates natural language interaction with MCP tools. The evaluation demonstrates that MCP Bridge successfully addresses the constraints of direct MCP connections while providing enhanced security controls and cross-platform compatibility, enabling sophisticated LLM-powered applications in previously inaccessible environments
Abstract:Recent advances in multi-agent systems manipulation have demonstrated a rising demand for the implementation of multi-UAV systems in urban areas which are always subjected to the presence of static and dynamic obstacles. The focus of the presented research is on the introduction of a nature-inspired collision-free control for a multi-UAV system considering obstacle avoidance maneuvers. Inspired by the collective behavior of tilapia fish and pigeon, the presented framework in this study uses a centralized controller for the optimal formation control/recovery, which is defined by probabilistic Lloyd's algorithm, while it uses a distributed controller for the intervehicle collision and obstacle avoidance. Further, the presented framework has been extended to the 3D space with 3D maneuvers. Finally, the presented framework has been applied to a multi-UAV system in 2D and 3D scenarios, and obtained results demonstrated the validity of the presented method in the presence of buildings and different types of obstacles.