Abstract:Surface wettability, governed by both topography and chemistry, plays a critical role in applications such as heat transfer, lubrication, microfluidics, and surface coatings. In this study, we present a machine learning (ML) framework capable of accurately predicting the wettability of laser-textured metal alloys using experimentally derived morphological and chemical features. Superhydrophilic and superhydrophobic surfaces were fabricated on AA6061 and AISI 4130 alloys via nanosecond laser texturing followed by chemical immersion treatments. Surface morphology was quantified using the Laws texture energy method and profilometry, while surface chemistry was characterized through X-ray photoelectron spectroscopy (XPS), extracting features such as functional group polarity, molecular volume, and peak area fraction. These features were used to train an ensemble neural network model incorporating residual connections, batch normalization, and dropout regularization. The model achieved high predictive accuracy (R2 = 0.942, RMSE = 13.896), outperforming previous approaches. Feature importance analysis revealed that surface chemistry had the strongest influence on contact angle prediction, with topographical features also contributing significantly. This work demonstrates the potential of artificial intelligence to model and predict wetting behavior by capturing the complex interplay of surface characteristics, offering a data-driven pathway for designing tailored functional surfaces.
Abstract:Predicting which hypothetical inorganic crystals can be experimentally realized remains a central challenge in accelerating materials discovery. SyntheFormer is a positive-unlabeled framework that learns synthesizability directly from crystal structure, combining a Fourier-transformed crystal periodicity (FTCP) representation with hierarchical feature extraction, Random-Forest feature selection, and a compact deep MLP classifier. The model is trained on historical data from 2011 through 2018 and evaluated prospectively on future years from 2019 to 2025, where the positive class constitutes only 1.02 per cent of samples. Under this temporally separated evaluation, SyntheFormer achieves a test area under the ROC curve of 0.735 and, with dual-threshold calibration, attains high-recall screening with 97.6 per cent recall at 94.2 per cent coverage, which minimizes missed opportunities while preserving discriminative power. Crucially, the model recovers experimentally confirmed metastable compounds that lie far from the convex hull and simultaneously assigns low scores to many thermodynamically stable yet unsynthesized candidates, demonstrating that stability alone is insufficient to predict experimental attainability. By aligning structure-aware representation with uncertainty-aware decision rules, SyntheFormer provides a practical route to prioritize synthesis targets and focus laboratory effort on the most promising new inorganic materials.