Abstract:The problem of depth completion involves predicting a dense depth image from a single sparse depth map and an RGB image. Unsupervised depth completion methods have been proposed for various datasets where ground truth depth data is unavailable and supervised methods cannot be applied. However, these models require auxiliary data to estimate depth values, which is far from real scenarios. Monocular depth estimation (MDE) models can produce a plausible relative depth map from a single image, but there is no work to properly combine the sparse depth map with MDE for depth completion; a simple affine transformation to the depth map will yield a high error since MDE are inaccurate at estimating depth difference between objects. We introduce StarryGazer, a domain-agnostic framework that predicts dense depth images from a single sparse depth image and an RGB image without relying on ground-truth depth by leveraging the power of large MDE models. First, we employ a pre-trained MDE model to produce relative depth images. These images are segmented and randomly rescaled to form synthetic pairs for dense pseudo-ground truth and corresponding sparse depths. A refinement network is trained with the synthetic pairs, incorporating the relative depth maps and RGB images to improve the model's accuracy and robustness. StarryGazer shows superior results over existing unsupervised methods and transformed MDE results on various datasets, demonstrating that our framework exploits the power of MDE models while appropriately fixing errors using sparse depth information.
Abstract:The generation of industrial Computer-Aided Design (CAD) models from user requests and specifications is crucial to enhancing efficiency in modern manufacturing. Traditional methods of CAD generation rely heavily on manual inputs and struggle with complex or non-standard designs, making them less suited for dynamic industrial needs. To overcome these challenges, we introduce Text2CAD, a novel framework that employs stable diffusion models tailored to automate the generation process and efficiently bridge the gap between user specifications in text and functional CAD models. This approach directly translates the user's textural descriptions into detailed isometric images, which are then precisely converted into orthographic views, e.g., top, front, and side, providing sufficient information to reconstruct 3D CAD models. This process not only streamlines the creation of CAD models from textual descriptions but also ensures that the resulting models uphold physical and dimensional consistency essential for practical engineering applications. Our experimental results show that Text2CAD effectively generates technical drawings that are accurately translated into high-quality 3D CAD models, showing substantial potential to revolutionize CAD automation in response to user demands.
Abstract:CNC manufacturing is a process that employs computer numerical control (CNC) machines to govern the movements of various industrial tools and machinery, encompassing equipment ranging from grinders and lathes to mills and CNC routers. However, the reliance on manual CNC programming has become a bottleneck, and the requirement for expert knowledge can result in significant costs. Therefore, we introduce a pioneering approach named CNC-Net, representing the use of deep neural networks (DNNs) to simulate CNC machines and grasp intricate operations when supplied with raw materials. CNC-Net constitutes a self-supervised framework that exclusively takes an input 3D model and subsequently generates the essential operation parameters required by the CNC machine to construct the object. Our method has the potential to transformative automation in manufacturing by offering a cost-effective alternative to the high costs of manual CNC programming while maintaining exceptional precision in 3D object production. Our experiments underscore the effectiveness of our CNC-Net in constructing the desired 3D objects through the utilization of CNC operations. Notably, it excels in preserving finer local details, exhibiting a marked enhancement in precision compared to the state-of-the-art 3D CAD reconstruction approaches.
Abstract:Point cloud completion addresses filling in the missing parts of a partial point cloud obtained from depth sensors and generating a complete point cloud. Although there has been steep progress in the supervised methods on the synthetic point cloud completion task, it is hardly applicable in real-world scenarios due to the domain gap between the synthetic and real-world datasets or the requirement of prior information. To overcome these limitations, we propose a novel self-supervised framework ACL-SPC for point cloud completion to train and test on the same data. ACL-SPC takes a single partial input and attempts to output the complete point cloud using an adaptive closed-loop (ACL) system that enforces the output same for the variation of an input. We evaluate our proposed ACL-SPC on various datasets to prove that it can successfully learn to complete a partial point cloud as the first self-supervised scheme. Results show that our method is comparable with unsupervised methods and achieves superior performance on the real-world dataset compared to the supervised methods trained on the synthetic dataset. Extensive experiments justify the necessity of self-supervised learning and the effectiveness of our proposed method for the real-world point cloud completion task. The code is publicly available from https://github.com/Sangminhong/ACL-SPC_PyTorch