Abstract:Assurance for artificial intelligence (AI) systems remains fragmented across software supply-chain security, adversarial machine learning, and governance documentation. Existing transparency mechanisms - including Model Cards, Datasheets, and Software Bills of Materials (SBOMs) - advance provenance reporting but rarely provide verifiable, machine-readable evidence of model security. This paper introduces the AI Risk Scanning (AIRS) Framework, a threat-model-based, evidence-generating framework designed to operationalize AI assurance. The AIRS Framework evolved through three progressive pilot studies - Smurf (AIBOM schema design), OPAL (operational validation), and Pilot C (AIRS) - that reframed AI documentation from descriptive disclosure toward measurable, evidence-bound verification. The framework aligns its assurance fields to the MITRE ATLAS adversarial ML taxonomy and automatically produces structured artifacts capturing model integrity, packaging and serialization safety, structural adapters, and runtime behaviors. Currently, the AIRS Framework is scoped to provide model-level assurances for LLMs, but it could be expanded to include other modalities and cover system-level threats (e.g. application-layer abuses, tool-calling). A proof-of-concept on a quantized GPT-OSS-20B model demonstrates enforcement of safe loader policies, per-shard hash verification, and contamination and backdoor probes executed under controlled runtime conditions. Comparative analysis with SBOM standards of SPDX 3.0 and CycloneDX 1.6 reveals alignment on identity and evaluation metadata, but identifies critical gaps in representing AI-specific assurance fields. The AIRS Framework thus extends SBOM practice to the AI domain by coupling threat modeling with automated, auditable evidence generation, providing a principled foundation for standardized, trustworthy, and machine-verifiable AI risk documentation.
Abstract:Large language models (LLMs) increasingly operate in multi-agent and safety-critical settings, raising open questions about how their vulnerabilities scale when models interact adversarially. This study examines whether larger models can systematically jailbreak smaller ones - eliciting harmful or restricted behavior despite alignment safeguards. Using standardized adversarial tasks from JailbreakBench, we simulate over 6,000 multi-turn attacker-target exchanges across major LLM families and scales (0.6B-120B parameters), measuring both harm score and refusal behavior as indicators of adversarial potency and alignment integrity. Each interaction is evaluated through aggregated harm and refusal scores assigned by three independent LLM judges, providing a consistent, model-based measure of adversarial outcomes. Aggregating results across prompts, we find a strong and statistically significant correlation between mean harm and the logarithm of the attacker-to-target size ratio (Pearson r = 0.51, p < 0.001; Spearman rho = 0.52, p < 0.001), indicating that relative model size correlates with the likelihood and severity of harmful completions. Mean harm score variance is higher across attackers (0.18) than across targets (0.10), suggesting that attacker-side behavioral diversity contributes more to adversarial outcomes than target susceptibility. Attacker refusal frequency is strongly and negatively correlated with harm (rho = -0.93, p < 0.001), showing that attacker-side alignment mitigates harmful responses. These findings reveal that size asymmetry influences robustness and provide exploratory evidence for adversarial scaling patterns, motivating more controlled investigations into inter-model alignment and safety.
Abstract:Language models are traditionally designed around causal masking. In domains with spatial or relational structure, causal masking is often viewed as inappropriate, and sequential linearizations are instead used. Yet the question of whether it is viable to accept the information loss introduced by causal masking on nonsequential data has received little direct study, in part because few domains offer both spatial and sequential representations of the same dataset. In this work, we investigate this issue in the domain of chess, which naturally supports both representations. We train language models with bidirectional and causal self-attention mechanisms on both spatial (board-based) and sequential (move-based) data. Our results show that models trained on spatial board states - \textit{even with causal masking} - consistently achieve stronger playing strength than models trained on sequential data. While our experiments are conducted on chess, our results are methodological and may have broader implications: applying causal masking to spatial data is a viable procedure for training unimodal LLMs on spatial data, and in some domains is even preferable to sequentialization.