Abstract:This paper explores the development of learning-based tunable control gains using EMT-in-the-loop simulation framework (e.g., PSCAD interfaced with Python-based learning modules) to address critical sub-synchronous oscillations. Since sub-synchronous control interactions (SSCI) arise from the mis-tuning of control gains under specific grid configurations, effective mitigation strategies require adaptive re-tuning of these gains. Such adaptiveness can be achieved by employing a closed-loop, learning-based framework that considers the grid conditions responsible for such sub-synchronous oscillations. This paper addresses this need by adopting methodologies inspired by Markov decision process (MDP) based reinforcement learning (RL), with a particular emphasis on simpler deep policy gradient methods with additional SSCI-specific signal processing modules such as down-sampling, bandpass filtering, and oscillation energy dependent reward computations. Our experimentation in a real-world event setting demonstrates that the deep policy gradient based trained policy can adaptively compute gain settings in response to varying grid conditions and optimally suppress control interaction-induced oscillations.
Abstract:Distribution feeder and load model reduction methods are essential for maintaining a good tradeoff between accurate representation of grid behavior and reduced computational complexity in power system studies. An effective algorithm to obtain a reduced order representation of the practical feeders using utility topological and loading data has been presented in this paper. Simulations conducted in this work show that the reduced feeder and load model of a utility feeder, obtained using the proposed method, can accurately capture contactor and motor stalling behaviors for critical events such as fault induced delayed voltage recovery.




Abstract:As the power system continues to be flooded with intermittent resources, it becomes more important to accurately assess the role of hydro and its impact on the power grid. While hydropower generation has been studied for decades, dependency of power generation on water availability and constraints in hydro operation are not well represented in power system models used in the planning and operation of large-scale interconnection studies. There are still multiple modeling gaps that need to be addressed; if not, they can lead to inaccurate operation and planning reliability studies, and consequently to unintentional load shedding or even blackouts. As a result, it is very important that hydropower is represented correctly in both steady-state and dynamic power system studies. In this paper, we discuss the development and use of the Hydrological Dispatch and Analysis Tool (Hy-DAT) as an interactive graphical user interface, that uses a novel methodology to address the hydropower modeling gaps like water availability and interdependency using a database and algorithms to generate accurate representative models for power system simulation.