Abstract:As IoT ecosystems continue to expand across critical sectors, they have become prominent targets for increasingly sophisticated and large-scale malware attacks. The evolving threat landscape, combined with the sensitive nature of IoT-generated data, demands detection frameworks that are both privacy-preserving and resilient to data heterogeneity. Federated Learning (FL) offers a promising solution by enabling decentralized model training without exposing raw data. However, standard FL algorithms such as FedAvg and FedProx often fall short in real-world deployments characterized by class imbalance and non-IID data distributions -- particularly in the presence of rare or disjoint malware classes. To address these challenges, we propose FedP3E (Privacy-Preserving Prototype Exchange), a novel FL framework that supports indirect cross-client representation sharing while maintaining data privacy. Each client constructs class-wise prototypes using Gaussian Mixture Models (GMMs), perturbs them with Gaussian noise, and transmits only these compact summaries to the server. The aggregated prototypes are then distributed back to clients and integrated into local training, supported by SMOTE-based augmentation to enhance representation of minority malware classes. Rather than relying solely on parameter averaging, our prototype-driven mechanism enables clients to enrich their local models with complementary structural patterns observed across the federation -- without exchanging raw data or gradients. This targeted strategy reduces the adverse impact of statistical heterogeneity with minimal communication overhead. We evaluate FedP3E on the N-BaIoT dataset under realistic cross-silo scenarios with varying degrees of data imbalance.
Abstract:The Internet of Things (IoT) is one of the fastest-growing computing industries. By the end of 2027, more than 29 billion devices are expected to be connected. These smart devices can communicate with each other with and without human intervention. This rapid growth has led to the emergence of new types of malware. However, traditional malware detection methods, such as signature-based and heuristic-based techniques, are becoming increasingly ineffective against these new types of malware. Therefore, it has become indispensable to find practical solutions for detecting IoT malware. Machine Learning (ML) and Deep Learning (DL) approaches have proven effective in dealing with these new IoT malware variants, exhibiting high detection rates. In this paper, we bridge the gap in research between the IoT malware analysis and the wide adoption of deep learning in tackling the problems in this domain. As such, we provide a comprehensive review on deep learning based malware analysis across various categories of the IoT domain (i.e. Extended Internet of Things (XIoT)), including Industrial IoT (IIoT), Internet of Medical Things (IoMT), Internet of Vehicles (IoV), and Internet of Battlefield Things (IoBT).
Abstract:Cyberharassment is a critical, socially relevant cybersecurity problem because of the adverse effects it can have on targeted groups or individuals. While progress has been made in understanding cyber-harassment, its detection, attacks on artificial intelligence (AI) based cyberharassment systems, and the social problems in cyberharassment detectors, little has been done in designing experiential learning educational materials that engage students in this emerging social cybersecurity in the era of AI. Experiential learning opportunities are usually provided through capstone projects and engineering design courses in STEM programs such as computer science. While capstone projects are an excellent example of experiential learning, given the interdisciplinary nature of this emerging social cybersecurity problem, it can be challenging to use them to engage non-computing students without prior knowledge of AI. Because of this, we were motivated to develop a hands-on lab platform that provided experiential learning experiences to non-computing students with little or no background knowledge in AI and discussed the lessons learned in developing this lab. In this lab used by social science students at North Carolina A&T State University across two semesters (spring and fall) in 2022, students are given a detailed lab manual and are to complete a set of well-detailed tasks. Through this process, students learn AI concepts and the application of AI for cyberharassment detection. Using pre- and post-surveys, we asked students to rate their knowledge or skills in AI and their understanding of the concepts learned. The results revealed that the students moderately understood the concepts of AI and cyberharassment.