Abstract:Vision-language models, which integrate computer vision and natural language processing capabilities, have demonstrated significant advancements in tasks such as image captioning and visual question and answering. However, similar to traditional models, they are susceptible to small perturbations, posing a challenge to their robustness, particularly in deployment scenarios. Evaluating the robustness of these models requires perturbations in both the vision and language modalities to learn their inter-modal dependencies. In this work, we train a generic surrogate model that can take both image and text as input and generate joint representation which is further used to generate adversarial perturbations for both the text and image modalities. This coordinated attack strategy is evaluated on the visual question and answering and visual reasoning datasets using various state-of-the-art vision-language models. Our results indicate that the proposed strategy outperforms other multi-modal attacks and single-modality attacks from the recent literature. Our results demonstrate their effectiveness in compromising the robustness of several state-of-the-art pre-trained multi-modal models such as instruct-BLIP, ViLT and others.
Abstract:Evaluating the robustness of Video classification models is very challenging, specifically when compared to image-based models. With their increased temporal dimension, there is a significant increase in complexity and computational cost. One of the key challenges is to keep the perturbations to a minimum to induce misclassification. In this work, we propose a multi-agent reinforcement learning approach (spatial and temporal) that cooperatively learns to identify the given video's sensitive spatial and temporal regions. The agents consider temporal coherence in generating fine perturbations, leading to a more effective and visually imperceptible attack. Our method outperforms the state-of-the-art solutions on the Lp metric and the average queries. Our method enables custom distortion types, making the robustness evaluation more relevant to the use case. We extensively evaluate 4 popular models for video action recognition on two popular datasets, HMDB-51 and UCF-101.
Abstract:Reducing the environmental impact of cloud computing requires efficient workload distribution across geographically dispersed Data Center Clusters (DCCs) and simultaneously optimizing liquid and air (HVAC) cooling with time shift of workloads within individual data centers (DC). This paper introduces Green-DCC, which proposes a Reinforcement Learning (RL) based hierarchical controller to optimize both workload and liquid cooling dynamically in a DCC. By incorporating factors such as weather, carbon intensity, and resource availability, Green-DCC addresses realistic constraints and interdependencies. We demonstrate how the system optimizes multiple data centers synchronously, enabling the scope of digital twins, and compare the performance of various RL approaches based on carbon emissions and sustainability metrics while also offering a framework and benchmark simulation for broader ML research in sustainability.
Abstract:We present a Reinforcement Learning Platform for Adversarial Black-box untargeted and targeted attacks, RLAB, that allows users to select from various distortion filters to create adversarial examples. The platform uses a Reinforcement Learning agent to add minimum distortion to input images while still causing misclassification by the target model. The agent uses a novel dual-action method to explore the input image at each step to identify sensitive regions for adding distortions while removing noises that have less impact on the target model. This dual action leads to faster and more efficient convergence of the attack. The platform can also be used to measure the robustness of image classification models against specific distortion types. Also, retraining the model with adversarial samples significantly improved robustness when evaluated on benchmark datasets. The proposed platform outperforms state-of-the-art methods in terms of the average number of queries required to cause misclassification. This advances trustworthiness with a positive social impact.
Abstract:Machine learning has driven an exponential increase in computational demand, leading to massive data centers that consume significant amounts of energy and contribute to climate change. This makes sustainable data center control a priority. In this paper, we introduce SustainDC, a set of Python environments for benchmarking multi-agent reinforcement learning (MARL) algorithms for data centers (DC). SustainDC supports custom DC configurations and tasks such as workload scheduling, cooling optimization, and auxiliary battery management, with multiple agents managing these operations while accounting for the effects of each other. We evaluate various MARL algorithms on SustainDC, showing their performance across diverse DC designs, locations, weather conditions, grid carbon intensity, and workload requirements. Our results highlight significant opportunities for improvement of data center operations using MARL algorithms. Given the increasing use of DC due to AI, SustainDC provides a crucial platform for the development and benchmarking of advanced algorithms essential for achieving sustainable computing and addressing other heterogeneous real-world challenges.
Abstract:There have been growing discussions on estimating and subsequently reducing the operational carbon footprint of enterprise data centers. The design and intelligent control for data centers have an important impact on data center carbon footprint. In this paper, we showcase PyDCM, a Python library that enables extremely fast prototyping of data center design and applies reinforcement learning-enabled control with the purpose of evaluating key sustainability metrics including carbon footprint, energy consumption, and observing temperature hotspots. We demonstrate these capabilities of PyDCM and compare them to existing works in EnergyPlus for modeling data centers. PyDCM can also be used as a standalone Gymnasium environment for demonstrating sustainability-focused data center control.
Abstract:The industrial multi-generator Wave Energy Converters (WEC) must handle multiple simultaneous waves coming from different directions called spread waves. These complex devices in challenging circumstances need controllers with multiple objectives of energy capture efficiency, reduction of structural stress to limit maintenance, and proactive protection against high waves. The Multi-Agent Reinforcement Learning (MARL) controller trained with the Proximal Policy Optimization (PPO) algorithm can handle these complexities. In this paper, we explore different function approximations for the policy and critic networks in modeling the sequential nature of the system dynamics and find that they are key to better performance. We investigated the performance of a fully connected neural network (FCN), LSTM, and Transformer model variants with varying depths and gated residual connections. Our results show that the transformer model of moderate depth with gated residual connections around the multi-head attention, multi-layer perceptron, and the transformer block (STrXL) proposed in this paper is optimal and boosts energy efficiency by an average of 22.1% for these complex spread waves over the existing spring damper (SD) controller. Furthermore, unlike the default SD controller, the transformer controller almost eliminated the mechanical stress from the rotational yaw motion for angled waves. Demo: https://tinyurl.com/yueda3jh
Abstract:We present a generic Reinforcement Learning (RL) framework optimized for crafting adversarial attacks on different model types spanning from ECG signal analysis (1D), image classification (2D), and video classification (3D). The framework focuses on identifying sensitive regions and inducing misclassifications with minimal distortions and various distortion types. The novel RL method outperforms state-of-the-art methods for all three applications, proving its efficiency. Our RL approach produces superior localization masks, enhancing interpretability for image classification and ECG analysis models. For applications such as ECG analysis, our platform highlights critical ECG segments for clinicians while ensuring resilience against prevalent distortions. This comprehensive tool aims to bolster both resilience with adversarial training and transparency across varied applications and data types.
Abstract:As machine learning workloads significantly increase energy consumption, sustainable data centers with low carbon emissions are becoming a top priority for governments and corporations worldwide. This requires a paradigm shift in optimizing power consumption in cooling and IT loads, shifting flexible loads based on the availability of renewable energy in the power grid, and leveraging battery storage from the uninterrupted power supply in data centers, using collaborative agents. The complex association between these optimization strategies and their dependencies on variable external factors like weather and the power grid carbon intensity makes this a hard problem. Currently, a real-time controller to optimize all these goals simultaneously in a dynamic real-world setting is lacking. We propose a Data Center Carbon Footprint Reduction (DC-CFR) multi-agent Reinforcement Learning (MARL) framework that optimizes data centers for the multiple objectives of carbon footprint reduction, energy consumption, and energy cost. The results show that the DC-CFR MARL agents effectively resolved the complex interdependencies in optimizing cooling, load shifting, and energy storage in real-time for various locations under real-world dynamic weather and grid carbon intensity conditions. DC-CFR significantly outperformed the industry standard ASHRAE controller with a considerable reduction in carbon emissions (14.5%), energy usage (14.4%), and energy cost (13.7%) when evaluated over one year across multiple geographical regions.
Abstract:We present a novel framework for generating adversarial benchmarks to evaluate the robustness of image classification models. Our framework allows users to customize the types of distortions to be optimally applied to images, which helps address the specific distortions relevant to their deployment. The benchmark can generate datasets at various distortion levels to assess the robustness of different image classifiers. Our results show that the adversarial samples generated by our framework with any of the image classification models, like ResNet-50, Inception-V3, and VGG-16, are effective and transferable to other models causing them to fail. These failures happen even when these models are adversarially retrained using state-of-the-art techniques, demonstrating the generalizability of our adversarial samples. We achieve competitive performance in terms of net $L_2$ distortion compared to state-of-the-art benchmark techniques on CIFAR-10 and ImageNet; however, we demonstrate our framework achieves such results with simple distortions like Gaussian noise without introducing unnatural artifacts or color bleeds. This is made possible by a model-based reinforcement learning (RL) agent and a technique that reduces a deep tree search of the image for model sensitivity to perturbations, to a one-level analysis and action. The flexibility of choosing distortions and setting classification probability thresholds for multiple classes makes our framework suitable for algorithmic audits.