Abstract:Quality-Diversity (QD) algorithms have shown remarkable success in discovering diverse, high-performing solutions, but rely heavily on hand-crafted behavioral descriptors that constrain exploration to predefined notions of diversity. Leveraging the equivalence between policies and occupancy measures, we present a theoretically grounded approach to automatically generate behavioral descriptors by embedding the occupancy measures of policies in Markov Decision Processes. Our method, AutoQD, leverages random Fourier features to approximate the Maximum Mean Discrepancy (MMD) between policy occupancy measures, creating embeddings whose distances reflect meaningful behavioral differences. A low-dimensional projection of these embeddings that captures the most behaviorally significant dimensions is then used as behavioral descriptors for off-the-shelf QD methods. We prove that our embeddings converge to true MMD distances between occupancy measures as the number of sampled trajectories and embedding dimensions increase. Through experiments in multiple continuous control tasks we demonstrate AutoQD's ability in discovering diverse policies without predefined behavioral descriptors, presenting a well-motivated alternative to prior methods in unsupervised Reinforcement Learning and QD optimization. Our approach opens new possibilities for open-ended learning and automated behavior discovery in sequential decision making settings without requiring domain-specific knowledge.
Abstract:Sample efficiency has been a key issue in reinforcement learning (RL). An efficient agent must be able to leverage its prior experiences to quickly adapt to similar, but new tasks and situations. Meta-RL is one attempt at formalizing and addressing this issue. Inspired by recent progress in meta-RL, we introduce BIMRL, a novel multi-layer architecture along with a novel brain-inspired memory module that will help agents quickly adapt to new tasks within a few episodes. We also utilize this memory module to design a novel intrinsic reward that will guide the agent's exploration. Our architecture is inspired by findings in cognitive neuroscience and is compatible with the knowledge on connectivity and functionality of different regions in the brain. We empirically validate the effectiveness of our proposed method by competing with or surpassing the performance of some strong baselines on multiple MiniGrid environments.