Abstract:Rapid advancements in collection and dissemination of multi-platform molecular and genomics data has resulted in enormous opportunities to aggregate such data in order to understand, prevent, and treat human diseases. While significant improvements have been made in multi-omic data integration methods to discover biological markers and mechanisms underlying both prognosis and treatment, the precise cellular functions governing these complex mechanisms still need detailed and data-driven de-novo evaluations. We propose a framework called Functional Integrative Bayesian Analysis of High-dimensional Multiplatform Genomic Data (fiBAG), that allows simultaneous identification of upstream functional evidence of proteogenomic biomarkers and the incorporation of such knowledge in Bayesian variable selection models to improve signal detection. fiBAG employs a conflation of Gaussian process models to quantify (possibly non-linear) functional evidence via Bayes factors, which are then mapped to a novel calibrated spike-and-slab prior, thus guiding selection and providing functional relevance to the associations with patient outcomes. Using simulations, we illustrate how integrative methods with functional calibration have higher power to detect disease related markers than non-integrative approaches. We demonstrate the profitability of fiBAG via a pan-cancer analysis of 14 cancer types to identify and assess the cellular mechanisms of proteogenomic markers associated with cancer stemness and patient survival.
Abstract:Retention of residual skills for persons who partially lose their cognitive or physical ability is of utmost importance. Research is focused on developing systems that provide need-based assistance for retention of such residual skills. This paper describes a novel cognitive collaborative control architecture C3A, designed to address the challenges of developing need- based assistance for wheelchair navigation. Organization of C3A is detailed and results from simulation of the proposed architecture is presented. For simulation of our proposed architecture, we have used ROS (Robot Operating System) as a control framework and a 3D robotic simulator called USARSim (Unified System for Automation and Robot Simulation).