Abstract:This paper presents ARTEMIS, an end-to-end autonomous driving framework that combines autoregressive trajectory planning with Mixture-of-Experts (MoE). Traditional modular methods suffer from error propagation, while existing end-to-end models typically employ static one-shot inference paradigms that inadequately capture the dynamic changes of the environment. ARTEMIS takes a different method by generating trajectory waypoints sequentially, preserves critical temporal dependencies while dynamically routing scene-specific queries to specialized expert networks. It effectively relieves trajectory quality degradation issues encountered when guidance information is ambiguous, and overcomes the inherent representational limitations of singular network architectures when processing diverse driving scenarios. Additionally, we use a lightweight batch reallocation strategy that significantly improves the training speed of the Mixture-of-Experts model. Through experiments on the NAVSIM dataset, ARTEMIS exhibits superior competitive performance, achieving 87.0 PDMS and 83.1 EPDMS with ResNet-34 backbone, demonstrates state-of-the-art performance on multiple metrics.
Abstract:This paper proposes a novel method for multi-lane convoy formation control that uses large language models (LLMs) to tackle coordination challenges in dynamic highway environments. Each connected and autonomous vehicle in the convoy uses a knowledge-driven approach to make real-time adaptive decisions based on various scenarios. Our method enables vehicles to dynamically perform tasks, including obstacle avoidance, convoy joining/leaving, and escort formation switching, all while maintaining the overall convoy structure. We design a Interlaced formation control strategy based on locally dynamic distributed graphs, ensuring the convoy remains stable and flexible. We conduct extensive experiments in the SUMO simulation platform across multiple traffic scenarios, and the results demonstrate that the proposed method is effective, robust, and adaptable to dynamic environments. The code is available at: https://github.com/chuduanfeng/ConvoyLLM.