Abstract:In contrast to the human ability to continuously acquire knowledge, agents struggle with the stability-plasticity dilemma in deep reinforcement learning (DRL), which refers to the trade-off between retaining existing skills (stability) and learning new knowledge (plasticity). Current methods focus on balancing these two aspects at the network level, lacking sufficient differentiation and fine-grained control of individual neurons. To overcome this limitation, we propose Neuron-level Balance between Stability and Plasticity (NBSP) method, by taking inspiration from the observation that specific neurons are strongly relevant to task-relevant skills. Specifically, NBSP first (1) defines and identifies RL skill neurons that are crucial for knowledge retention through a goal-oriented method, and then (2) introduces a framework by employing gradient masking and experience replay techniques targeting these neurons to preserve the encoded existing skills while enabling adaptation to new tasks. Numerous experimental results on the Meta-World and Atari benchmarks demonstrate that NBSP significantly outperforms existing approaches in balancing stability and plasticity.
Abstract:Underwater communication is extremely challenging for small underwater robots which typically have stringent power and size constraints. In our previous work, we developed an artificial electrocommunication system which could be an alternative for the communication of small underwater robots. This paper further presents a new electrocommunication system that utilizes Binary Frequency Shift Keying (2FSK) modulation and deep-learning-based demodulation for underwater robots. We first derive an underwater electrocommunication model that covers both the near-field area and a large transition area outside of the near-field area. 2FSK modulation is adopted to improve the anti-interference ability of the electric signal. A deep learning algorithm is used to demodulate the electric signal by the receiver. Simulations and experiments show that with the same testing condition, the new communication system outperforms the previous system in both the communication distance and the data transmitting rate. In specific, the newly developed communication system achieves stable communication within the distance of 10 m at a data transfer rate of 5 Kbps with a power consumption of less than 0.1 W. The substantial increase in communication distance further improves the possibility of electrocommunication in underwater robotics.