Abstract:Designing diverse and safety-critical driving scenarios is essential for evaluating autonomous driving systems. In this paper, we propose a novel framework that leverages Large Language Models (LLMs) for few-shot code generation to automatically synthesize driving scenarios within the CARLA simulator, which has flexibility in scenario scripting, efficient code-based control of traffic participants, and enforcement of realistic physical dynamics. Given a few example prompts and code samples, the LLM generates safety-critical scenario scripts that specify the behavior and placement of traffic participants, with a particular focus on collision events. To bridge the gap between simulation and real-world appearance, we integrate a video generation pipeline using Cosmos-Transfer1 with ControlNet, which converts rendered scenes into realistic driving videos. Our approach enables controllable scenario generation and facilitates the creation of rare but critical edge cases, such as pedestrian crossings under occlusion or sudden vehicle cut-ins. Experimental results demonstrate the effectiveness of our method in generating a wide range of realistic, diverse, and safety-critical scenarios, offering a promising tool for simulation-based testing of autonomous vehicles.
Abstract:The impressive achievements of generative models in creating high-quality videos have raised concerns about digital integrity and privacy vulnerabilities. Recent works of AI-generated content detection have been widely studied in the image field (e.g., deepfake), yet the video field has been unexplored. Large Vision Language Model (LVLM) has become an emerging tool for AI-generated content detection for its strong reasoning and multimodal capabilities. It breaks the limitations of traditional deep learning based methods faced with like lack of transparency and inability to recognize new artifacts. Motivated by this, we propose LAVID, a novel LVLMs-based ai-generated video detection with explicit knowledge enhancement. Our insight list as follows: (1) The leading LVLMs can call external tools to extract useful information to facilitate its own video detection task; (2) Structuring the prompt can affect LVLM's reasoning ability to interpret information in video content. Our proposed pipeline automatically selects a set of explicit knowledge tools for detection, and then adaptively adjusts the structure prompt by self-rewriting. Different from prior SOTA that trains additional detectors, our method is fully training-free and only requires inference of the LVLM for detection. To facilitate our research, we also create a new benchmark \vidfor with high-quality videos generated from multiple sources of video generation tools. Evaluation results show that LAVID improves F1 scores by 6.2 to 30.2% over the top baselines on our datasets across four SOTA LVLMs.