Abstract:Music adversarial attacks have garnered significant interest in the field of Music Information Retrieval (MIR). In this paper, we present Music Adversarial Inpainting Attack (MAIA), a novel adversarial attack framework that supports both white-box and black-box attack scenarios. MAIA begins with an importance analysis to identify critical audio segments, which are then targeted for modification. Utilizing generative inpainting models, these segments are reconstructed with guidance from the output of the attacked model, ensuring subtle and effective adversarial perturbations. We evaluate MAIA on multiple MIR tasks, demonstrating high attack success rates in both white-box and black-box settings while maintaining minimal perceptual distortion. Additionally, subjective listening tests confirm the high audio fidelity of the adversarial samples. Our findings highlight vulnerabilities in current MIR systems and emphasize the need for more robust and secure models.
Abstract:Music Information Retrieval (MIR) systems are highly vulnerable to adversarial attacks that are often imperceptible to humans, primarily due to a misalignment between model feature spaces and human auditory perception. Existing defenses and perceptual metrics frequently fail to adequately capture these auditory nuances, a limitation supported by our initial listening tests showing low correlation between common metrics and human judgments. To bridge this gap, we introduce Perceptually-Aligned MERT Transformer (PAMT), a novel framework for learning robust, perceptually-aligned music representations. Our core innovation lies in the psychoacoustically-conditioned sequential contrastive transformer, a lightweight projection head built atop a frozen MERT encoder. PAMT achieves a Spearman correlation coefficient of 0.65 with subjective scores, outperforming existing perceptual metrics. Our approach also achieves an average of 9.15\% improvement in robust accuracy on challenging MIR tasks, including Cover Song Identification and Music Genre Classification, under diverse perceptual adversarial attacks. This work pioneers architecturally-integrated psychoacoustic conditioning, yielding representations significantly more aligned with human perception and robust against music adversarial attacks.