Abstract:External memory systems are pivotal for enabling Large Language Model (LLM) agents to maintain persistent knowledge and perform long-horizon decision-making. Existing paradigms typically follow a two-stage process: computationally expensive memory construction (e.g., structuring data into graphs) followed by naive retrieval-augmented generation. However, our empirical analysis reveals two fundamental limitations: complex construction incurs high costs with marginal performance gains, and simple context concatenation fails to bridge the gap between retrieval recall and reasoning accuracy. To address these challenges, we propose CoM (Chain-of-Memory), a novel framework that advocates for a paradigm shift toward lightweight construction paired with sophisticated utilization. CoM introduces a Chain-of-Memory mechanism that organizes retrieved fragments into coherent inference paths through dynamic evolution, utilizing adaptive truncation to prune irrelevant noise. Extensive experiments on the LongMemEval and LoCoMo benchmarks demonstrate that CoM outperforms strong baselines with accuracy gains of 7.5%-10.4%, while drastically reducing computational overhead to approximately 2.7% of token consumption and 6.0% of latency compared to complex memory architectures.
Abstract:High-fidelity agent initialization is crucial for credible Agent-Based Modeling across diverse domains. A robust framework should be Topic-Adaptive, capturing macro-level joint distributions while ensuring micro-level individual rationality. Existing approaches fall into two categories: static data-based retrieval methods that fail to adapt to unseen topics absent from the data, and LLM-based generation methods that lack macro-level distribution awareness, resulting in inconsistencies between micro-level persona attributes and reality. To address these problems, we propose HAG, a Hierarchical Agent Generation framework that formalizes population generation as a two-stage decision process. Firstly, utilizing a World Knowledge Model to infer hierarchical conditional probabilities to construct the Topic-Adaptive Tree, achieving macro-level distribution alignment. Then, grounded real-world data, instantiation and agentic augmentation are carried out to ensure micro-level consistency. Given the lack of specialized evaluation, we establish a multi-domain benchmark and a comprehensive PACE evaluation framework. Extensive experiments show that HAG significantly outperforms representative baselines, reducing population alignment errors by an average of 37.7% and enhancing sociological consistency by 18.8%.