Abstract:Algorithmic fairness has emerged as a central issue in ML, and it has become standard practice to adjust ML algorithms so that they will satisfy fairness requirements such as Equal Opportunity. In this paper we consider the effects of adopting such fair classifiers on the overall level of ecosystem fairness. Specifically, we introduce the study of fairness with competing firms, and demonstrate the failure of fair classifiers in yielding fair ecosystems. Our results quantify the loss of fairness in systems, under a variety of conditions, based on classifiers' correlation and the level of their data overlap. We show that even if competing classifiers are individually fair, the ecosystem's outcome may be unfair; and that adjusting biased algorithms to improve their individual fairness may lead to an overall decline in ecosystem fairness. In addition to these theoretical results, we also provide supporting experimental evidence. Together, our model and results provide a novel and essential call for action.
Abstract:Two firms are engaged in a competitive prediction task. Each firm has two sources of data -- labeled historical data and unlabeled inference-time data -- and uses the former to derive a prediction model, and the latter to make predictions on new instances. We study data-sharing contracts between the firms. The novelty of our study is to introduce and highlight the differences between contracts that share prediction models only, contracts to share inference-time predictions only, and contracts to share both. Our analysis proceeds on three levels. First, we develop a general Bayesian framework that facilitates our study. Second, we narrow our focus to two natural settings within this framework: (i) a setting in which the accuracy of each firm's prediction model is common knowledge, but the correlation between the respective models is unknown; and (ii) a setting in which two hypotheses exist regarding the optimal predictor, and one of the firms has a structural advantage in deducing it. Within these two settings we study optimal contract choice. More specifically, we find the individually rational and Pareto-optimal contracts for some notable cases, and describe specific settings where each of the different sharing contracts emerge as optimal. Finally, in the third level of our analysis we demonstrate the applicability of our concepts in a synthetic simulation using real loan data.