Abstract:Electrical Impedance Tomography (EIT)-inspired tactile sensors are gaining attention in robotic tactile sensing due to their cost-effectiveness, safety, and scalability with sparse electrode configurations. This paper presents a data augmentation strategy for learning-based tactile reconstruction that amplifies the original single-frame signal measurement into 32 distinct, effective signal data for training. This approach supplements uncollected conditions of position information, resulting in more accurate and high-resolution tactile reconstructions. Data augmentation for EIT significantly reduces the required EIT measurements and achieves promising performance with even limited samples. Simulation results show that the proposed method improves the correlation coefficient by over 12% and reduces the relative error by over 21% under various noise levels. Furthermore, we demonstrate that a standard deep neural network (DNN) utilizing the proposed data augmentation reduces the required data down to 1/31 while achieving a similar tactile reconstruction quality. Real-world tests further validate the approach's effectiveness on a flexible EIT-based tactile sensor. These results could help address the challenge of training tactile sensing networks with limited available measurements, improving the accuracy and applicability of EIT-based tactile sensing systems.
Abstract:Advancements in high-throughput biomedical applications necessitate real-time, large field-of-view (FOV) imaging capabilities. Conventional lens-free imaging (LFI) systems, while addressing the limitations of physical lenses, have been constrained by dynamic, hard-to-model optical fields, resulting in a limited one-shot FOV of approximately 20 $mm^2$. This restriction has been a major bottleneck in applications like live-cell imaging and automation of microfluidic systems for biomedical research. Here, we present a deep-learning(DL)-based imaging framework - GenLFI - leveraging generative artificial intelligence (AI) for holographic image reconstruction. We demonstrate that GenLFI can achieve a real-time FOV over 550 $mm^2$, surpassing the current LFI system by more than 20-fold, and even larger than the world's largest confocal microscope by 1.76 times. The resolution is at the sub-pixel level of 5.52 $\mu m$, without the need for a shifting light source. The unsupervised learning-based reconstruction does not require optical field modeling, making imaging dynamic 3D samples (e.g., droplet-based microfluidics and 3D cell models) in complex optical fields possible. This GenLFI framework unlocks the potential of LFI systems, offering a robust tool to tackle new frontiers in high-throughput biomedical applications such as drug discovery.