Abstract:Digital breast tomosynthesis (DBT) exams should utilize the lowest possible radiation dose while maintaining sufficiently good image quality for accurate medical diagnosis. In this work, we propose a convolution neural network (CNN) to restore low-dose (LD) DBT projections to achieve an image quality equivalent to a standard full-dose (FD) acquisition. The proposed network architecture benefits from priors in terms of layers that were inspired by traditional model-based (MB) restoration methods, considering a model-based deep learning approach, where the network is trained to operate in the variance stabilization transformation (VST) domain. To accurately control the network operation point, in terms of noise and blur of the restored image, we propose a loss function that minimizes the bias and matches residual noise between the input and the output. The training dataset was composed of clinical data acquired at the standard FD and low-dose pairs obtained by the injection of quantum noise. The network was tested using real DBT projections acquired with a physical anthropomorphic breast phantom. The proposed network achieved superior results in terms of the mean normalized squared error (MNSE), training time and noise spatial correlation compared with networks trained with traditional data-driven methods. The proposed approach can be extended for other medical imaging application that requires LD acquisitions.
Abstract:Digital mammography is still the most common imaging tool for breast cancer screening. Although the benefits of using digital mammography for cancer screening outweigh the risks associated with the x-ray exposure, the radiation dose must be kept as low as possible while maintaining the diagnostic utility of the generated images, thus minimizing patient risks. Many studies investigated the feasibility of dose reduction by restoring low-dose images using deep neural networks. In these cases, choosing the appropriate training database and loss function is crucial and impacts the quality of the results. In this work, a modification of the ResNet architecture, with hierarchical skip connections, is proposed to restore low-dose digital mammography. We compared the restored images to the standard full-dose images. Moreover, we evaluated the performance of several loss functions for this task. For training purposes, we extracted 256,000 image patches from a dataset of 400 images of retrospective clinical mammography exams, where different dose levels were simulated to generate low and standard-dose pairs. To validate the network in a real scenario, a physical anthropomorphic breast phantom was used to acquire real low-dose and standard full-dose images in a commercially avaliable mammography system, which were then processed through our trained model. An analytical restoration model for low-dose digital mammography, previously presented, was used as a benchmark in this work. Objective assessment was performed through the signal-to-noise ratio (SNR) and mean normalized squared error (MNSE), decomposed into residual noise and bias. Results showed that the perceptual loss function (PL4) is able to achieve virtually the same noise levels of a full-dose acquisition, while resulting in smaller signal bias compared to other loss functions.