Abstract:This paper presents an approach developed to address the PlantClef 2025 challenge, which consists of a fine-grained multi-label species identification, over high-resolution images. Our solution focused on employing class prototypes obtained from the training dataset as a proxy guidance for training a segmentation Vision Transformer (ViT) on the test set images. To obtain these representations, the proposed method extracts features from training dataset images and create clusters, by applying K-Means, with $K$ equals to the number of classes in the dataset. The segmentation model is a customized narrow ViT, built by replacing the patch embedding layer with a frozen DinoV2, pre-trained on the training dataset for individual species classification. This model is trained to reconstruct the class prototypes of the training dataset from the test dataset images. We then use this model to obtain attention scores that enable to identify and localize areas of interest and consequently guide the classification process. The proposed approach enabled a domain-adaptation from multi-class identification with individual species, into multi-label classification from high-resolution vegetation plots. Our method achieved fifth place in the PlantCLEF 2025 challenge on the private leaderboard, with an F1 score of 0.33331. Besides that, in absolute terms our method scored 0.03 lower than the top-performing submission, suggesting that it may achieved competitive performance in the benchmark task. Our code is available at \href{https://github.com/ADAM-UEFS/PlantCLEF2025}{https://github.com/ADAM-UEFS/PlantCLEF2025}.
Abstract:This paper proposes a competitive and computationally efficient approach to probabilistic rainfall nowcasting. A video projector (V-JEPA Vision Transformer) associated to a lightweight probabilistic head is attached to a pre-trained satellite vision encoder (DINOv3-SAT493M) to map encoder tokens into a discrete empirical CDF (eCDF) over 4-hour accumulated rainfall. The projector-head is optimized end-to-end over the Ranked Probability Score (RPS). As an alternative, 3D-UNET baselines trained with an aggregate Rank Probability Score and a per-pixel Gamma-Hurdle objective are used. On the Weather4Cast 2025 benchmark, the proposed method achieved a promising performance, with a CRPS of 3.5102, which represents $\approx$ 26% in effectiveness gain against the best 3D-UNET.