Abstract:The unprecedented X-ray flux density provided by modern X-ray sources offers new spatiotemporal possibilities for X-ray imaging of fast dynamic processes. Approaches to exploit such possibilities often result in either i) a limited number of projections or spatial information due to limited scanning speed, as in time-resolved tomography, or ii) a limited number of time points, as in stroboscopic imaging, making the reconstruction problem ill-posed and unlikely to be solved by classical reconstruction approaches. 4D reconstruction from such data requires sample priors, which can be included via deep learning (DL). State-of-the-art 4D reconstruction methods for X-ray imaging combine the power of AI and the physics of X-ray propagation to tackle the challenge of sparse views. However, most approaches do not constrain the physics of the studied process, i.e., a full physical model. Here we present 4D physics-informed optimized neural implicit X-ray imaging (4D-PIONIX), a novel physics-informed 4D X-ray image reconstruction method combining the full physical model and a state-of-the-art DL-based reconstruction method for 4D X-ray imaging from sparse views. We demonstrate and evaluate the potential of our approach by retrieving 4D information from ultra-sparse spatiotemporal acquisitions of simulated binary droplet collisions, a relevant fluid dynamic process. We envision that this work will open new spatiotemporal possibilities for various 4D X-ray imaging modalities, such as time-resolved X-ray tomography and more novel sparse acquisition approaches like X-ray multi-projection imaging, which will pave the way for investigations of various rapid 4D dynamics, such as fluid dynamics and composite testing.
Abstract:The X-ray flux provided by X-ray free-electron lasers and storage rings offers new spatiotemporal possibilities to study in-situ and operando dynamics, even using single pulses of such facilities. X-ray Multi-Projection Imaging (XMPI) is a novel technique that enables volumetric information using single pulses of such facilities and avoids centrifugal forces induced by state-of-the-art time-resolved 3D methods such as time-resolved tomography. As a result, XMPI can acquire 3D movies (4D) at least three orders of magnitude faster than current methods. However, it is exceptionally challenging to reconstruct 4D from highly sparse projections as acquired by XMPI with current algorithms. Here, we present 4D-ONIX, a Deep Learning (DL)-based approach that learns to reconstruct 3D movies (4D) from an extremely limited number of projections. It combines the computational physical model of X-ray interaction with matter and state-of-the-art DL methods. We demonstrate the potential of 4D-ONIX to generate high-quality 4D by generalizing over multiple experiments with only two projections per timestamp for binary droplet collisions. We envision that 4D-ONIX will become an enabling tool for 4D analysis, offering new spatiotemporal resolutions to study processes not possible before.