Abstract:The use of robotics in humanitarian demining increasingly involves computer vision techniques to improve landmine detection capabilities. However, in the absence of diverse and realistic datasets, the reliable validation of algorithms remains a challenge for the research community. In this paper, we introduce MineInsight, a publicly available multi-sensor, multi-spectral dataset designed for off-road landmine detection. The dataset features 35 different targets (15 landmines and 20 commonly found objects) distributed along three distinct tracks, providing a diverse and realistic testing environment. MineInsight is, to the best of our knowledge, the first dataset to integrate dual-view sensor scans from both an Unmanned Ground Vehicle and its robotic arm, offering multiple viewpoints to mitigate occlusions and improve spatial awareness. It features two LiDARs, as well as images captured at diverse spectral ranges, including visible (RGB, monochrome), visible short-wave infrared (VIS-SWIR), and long-wave infrared (LWIR). Additionally, the dataset comes with an estimation of the location of the targets, offering a benchmark for evaluating detection algorithms. We recorded approximately one hour of data in both daylight and nighttime conditions, resulting in around 38,000 RGB frames, 53,000 VIS-SWIR frames, and 108,000 LWIR frames. MineInsight serves as a benchmark for developing and evaluating landmine detection algorithms. Our dataset is available at https://github.com/mariomlz99/MineInsight.
Abstract:Gas Chromatography coupled with Ion Mobility Spectrometry (GC-IMS) is a dual-separation analytical technique widely used for identifying components in gaseous samples by separating and analysing the arrival times of their constituent species. Data generated by GC-IMS is typically represented as two-dimensional spectra, providing rich information but posing challenges for data-driven analysis due to limited labelled datasets. This study introduces a novel method for generating synthetic 2D spectra using a deep learning framework based on Autoencoders. Although applied here to GC-IMS data, the approach is broadly applicable to any two-dimensional spectral measurements where labelled data are scarce. While performing component classification over a labelled dataset of GC-IMS records, the addition of synthesized records significantly has improved the classification performance, demonstrating the method's potential for overcoming dataset limitations in machine learning frameworks.
Abstract:Miniaturization of cameras and LiDAR sensors has enabled the development of wearable 3D mapping systems for emergency responders. These systems have the potential to revolutionize response capabilities by providing real-time, high-fidelity maps of dynamic and hazardous environments. We present our recent efforts towards the development of such ultra-portable 3D mapping systems. We review four different sensor configurations, either helmet-mounted or body-worn, with two different mapping algorithms that were implemented and evaluated during field trials. The paper discusses the experimental results with the aim to stimulate further discussion within the portable 3D mapping research community.