Abstract:MixRx uses Large Language Models (LLMs) to classify drug combination interactions as Additive, Synergistic, or Antagonistic, given a multi-drug patient history. We evaluate the performance of 4 models, GPT-2, Mistral Instruct 2.0, and the fine-tuned counterparts. Our results showed a potential for such an application, with the Mistral Instruct 2.0 Fine-Tuned model providing an average accuracy score on standard and perturbed datasets of 81.5%. This paper aims to further develop an upcoming area of research that evaluates if LLMs can be used for biological prediction tasks.
Abstract:Clinical notes are often stored in unstructured or semi-structured formats after extraction from electronic medical record (EMR) systems, which complicates their use for secondary analysis and downstream clinical applications. Reliable identification of section boundaries is a key step toward structuring these notes, as sections such as history of present illness, medications, and discharge instructions each provide distinct clinical contexts. In this work, we evaluate rule-based baselines, domain-specific transformer models, and large language models for clinical note segmentation using a curated dataset of 1,000 notes from MIMIC-IV. Our experiments show that large API-based models achieve the best overall performance, with GPT-5-mini reaching a best average F1 of 72.4 across sentence-level and freetext segmentation. Lightweight baselines remain competitive on structured sentence-level tasks but falter on unstructured freetext. Our results provide guidance for method selection and lay the groundwork for downstream tasks such as information extraction, cohort identification, and automated summarization.
Abstract:Emergency responders managing hazardous material HAZMAT incidents face critical, time-sensitive decisions, manually navigating extensive chemical guidelines. We investigate whether today's language models can assist responders by rapidly and reliably understanding critical information, identifying hazards, and providing recommendations. We introduce the Chemical Emergency Response Evaluation Framework (ChEmREF), a new benchmark comprising questions on 1,035 HAZMAT chemicals from the Emergency Response Guidebook and the PubChem Database. ChEmREF is organized into three tasks: (1) translation of chemical representation between structured and unstructured forms (e.g., converting C2H6O to ethanol), (2) emergency response generation (e.g., recommending appropriate evacuation distances) and (3) domain knowledge question answering from chemical safety and certification exams. Our best evaluated models received an exact match of 68.0% on unstructured HAZMAT chemical representation translation, a LLM Judge score of 52.7% on incident response recommendations, and a multiple-choice accuracy of 63.9% on HAMZAT examinations. These findings suggest that while language models show potential to assist emergency responders in various tasks, they require careful human oversight due to their current limitations.