Abstract:There is a growing demand for the use of Artificial Intelligence (AI) and Machine Learning (ML) in healthcare, particularly as clinical decision support systems to assist medical professionals. However, the complexity of many of these models, often referred to as black box models, raises concerns about their safe integration into clinical settings as it is difficult to understand how they arrived at their predictions. This paper discusses insights and recommendations derived from an expert working group convened by the UK Medicine and Healthcare products Regulatory Agency (MHRA). The group consisted of healthcare professionals, regulators, and data scientists, with a primary focus on evaluating the outputs from different AI algorithms in clinical decision-making contexts. Additionally, the group evaluated findings from a pilot study investigating clinicians' behaviour and interaction with AI methods during clinical diagnosis. Incorporating AI methods is crucial for ensuring the safety and trustworthiness of medical AI devices in clinical settings. Adequate training for stakeholders is essential to address potential issues, and further insights and recommendations for safely adopting AI systems in healthcare settings are provided.
Abstract:Machine learning (ML), artificial intelligence (AI) and other modern statistical methods are providing new opportunities to operationalize previously untapped and rapidly growing sources of data for patient benefit. Whilst there is a lot of promising research currently being undertaken, the literature as a whole lacks: transparency; clear reporting to facilitate replicability; exploration for potential ethical concerns; and, clear demonstrations of effectiveness. There are many reasons for why these issues exist, but one of the most important that we provide a preliminary solution for here is the current lack of ML/AI- specific best practice guidance. Although there is no consensus on what best practice looks in this field, we believe that interdisciplinary groups pursuing research and impact projects in the ML/AI for health domain would benefit from answering a series of questions based on the important issues that exist when undertaking work of this nature. Here we present 20 questions that span the entire project life cycle, from inception, data analysis, and model evaluation, to implementation, as a means to facilitate project planning and post-hoc (structured) independent evaluation. By beginning to answer these questions in different settings, we can start to understand what constitutes a good answer, and we expect that the resulting discussion will be central to developing an international consensus framework for transparent, replicable, ethical and effective research in artificial intelligence (AI-TREE) for health.