Abstract:Neural networks have advanced combinatorial optimization, with Transformer-based solvers achieving near-optimal solutions on the Traveling Salesman Problem (TSP) in milliseconds. However, these models operate as black boxes, providing no insight into the geometric patterns they learn or the heuristics they employ during tour construction. We address this opacity by applying sparse autoencoders (SAEs), a mechanistic interpretability technique, to a Transformer-based TSP solver, representing the first application of activation-based interpretability methods to operations research models. We train a pointer network with reinforcement learning on 100-node instances, then fit an SAE to the encoder's residual stream to discover an overcomplete dictionary of interpretable features. Our analysis reveals that the solver naturally develops features mirroring fundamental TSP concepts: boundary detectors that activate on convex-hull nodes, cluster-sensitive features responding to locally dense regions, and separator features encoding geometric partitions. These findings provide the first model-internal account of what neural TSP solvers compute before node selection, demonstrate that geometric structure emerges without explicit supervision, and suggest pathways toward transparent hybrid systems that combine neural efficiency with algorithmic interpretability. Interactive feature explorer: https://reubennarad.github.io/TSP_interp
Abstract:Large Language Models (LLMs) have shown significant limitations in understanding creative content, as demonstrated by Hessel et al. (2023)'s influential work on the New Yorker Cartoon Caption Contest (NYCCC). Their study exposed a substantial gap between LLMs and humans in humor comprehension, establishing that understanding and evaluating creative content is key challenge in AI development. We revisit this challenge by decomposing humor understanding into three components and systematically improve each: enhancing visual understanding through improved annotation, utilizing LLM-generated humor reasoning and explanations, and implementing targeted alignment with human preference data. Our refined approach achieves 82.4% accuracy in caption ranking, singificantly improving upon the previous 67% benchmark and matching the performance of world-renowned human experts in this domain. Notably, while attempts to mimic subgroup preferences through various persona prompts showed minimal impact, model finetuning with crowd preferences proved remarkably effective. These findings reveal that LLM limitations in creative judgment can be effectively addressed through focused alignment to specific subgroups and individuals. Lastly, we propose the position that achieving artificial general intelligence necessitates systematic collection of human preference data across creative domains. We advocate that just as human creativity is deeply influenced by individual and cultural preferences, training LLMs with diverse human preference data may be essential for developing true creative understanding.