Abstract:Drug repositioning aims to identify potential new indications for existing drugs to reduce the time and financial costs associated with developing new drugs. Most existing deep learning-based drug repositioning methods predominantly utilize graph-based representations. However, graph-based drug repositioning methods struggle to perform effective inference in cold-start scenarios involving novel drugs because of the lack of association information with the diseases. Unlike traditional graph-based approaches, we propose a bidirectional behavior learning strategy for drug repositioning, known as BiBLDR. This innovative framework redefines drug repositioning as a behavior sequential learning task to capture drug-disease interaction patterns. First, we construct bidirectional behavioral sequences based on drug and disease sides. The consideration of bidirectional information ensures a more meticulous and rigorous characterization of the behavioral sequences. Subsequently, we propose a two-stage strategy for drug repositioning. In the first stage, we construct prototype spaces to characterize the representational attributes of drugs and diseases. In the second stage, these refined prototypes and bidirectional behavior sequence data are leveraged to predict potential drug-disease associations. Based on this learning approach, the model can more robustly and precisely capture the interactive relationships between drug and disease features from bidirectional behavioral sequences. Extensive experiments demonstrate that our method achieves state-of-the-art performance on benchmark datasets. Meanwhile, BiBLDR demonstrates significantly superior performance compared to previous methods in cold-start scenarios. Our code is published in https://github.com/Renyeeah/BiBLDR.
Abstract:Current mainstream deep learning techniques exhibit an over-reliance on extensive training data and a lack of adaptability to the dynamic world, marking a considerable disparity from human intelligence. To bridge this gap, Few-Shot Class-Incremental Learning (FSCIL) has emerged, focusing on continuous learning of new categories with limited samples without forgetting old knowledge. Existing FSCIL studies typically use a single model to learn knowledge across all sessions, inevitably leading to the stability-plasticity dilemma. Unlike machines, humans store varied knowledge in different cerebral cortices. Inspired by this characteristic, our paper aims to develop a method that learns independent models for each session. It can inherently prevent catastrophic forgetting. During the testing stage, our method integrates Uncertainty Quantification (UQ) for model deployment. Our method provides a fresh viewpoint for FSCIL and demonstrates the state-of-the-art performance on CIFAR-100 and mini-ImageNet datasets.
Abstract:Iris recognition is a secure biometric technology known for its stability and privacy. With no two irises being identical and little change throughout a person's lifetime, iris recognition is considered more reliable and less susceptible to external factors than other biometric recognition methods. Unlike traditional machine learning-based iris recognition methods, deep learning technology does not rely on feature engineering and boasts excellent performance. This paper collects 120 relevant papers to summarize the development of iris recognition based on deep learning. We first introduce the background of iris recognition and the motivation and contribution of this survey. Then, we present the common datasets widely used in iris recognition. After that, we summarize the key tasks involved in the process of iris recognition based on deep learning technology, including identification, segmentation, presentation attack detection, and localization. Finally, we discuss the challenges and potential development of iris recognition. This review provides a comprehensive sight of the research of iris recognition based on deep learning.
Abstract:Finger vein recognition is an emerging biometric recognition technology. Different from the other biometric features on the body surface, the venous vascular tissue of the fingers is buried deep inside the skin. Due to this advantage, finger vein recognition is highly stable and private. They are almost impossible to be stolen and difficult to interfere with by external conditions. Unlike the finger vein recognition methods based on traditional machine learning, the artificial neural network technique, especially deep learning, it without relying on feature engineering and have superior performance. To summarize the development of finger vein recognition based on artificial neural networks, this paper collects 149 related papers. First, we introduce the background of finger vein recognition and the motivation of this survey. Then, the development history of artificial neural networks and the representative networks on finger vein recognition tasks are introduced. The public datasets that are widely used in finger vein recognition are then described. After that, we summarize the related finger vein recognition tasks based on classical neural networks and deep neural networks, respectively. Finally, the challenges and potential development directions in finger vein recognition are discussed. To our best knowledge, this paper is the first comprehensive survey focusing on finger vein recognition based on artificial neural networks.
Abstract:Finger vein image recognition technology plays an important role in biometric recognition and has been successfully applied in many fields. Because veins are buried beneath the skin tissue, finger vein image recognition has an unparalleled advantage, which is not easily disturbed by external factors. This review summarizes 46 papers about deep learning for finger vein image recognition from 2017 to 2021. These papers are summarized according to the tasks of deep neural networks. Besides, we present the challenges and potential development directions of finger vein image recognition.