Abstract:Social interactions incorporate nonverbal signals to convey emotions alongside speech, including facial expressions and body gestures. Generative models have demonstrated promising results in creating full-body nonverbal animations synchronized with speech; however, evaluations using statistical metrics in 2D settings fail to fully capture user-perceived emotions, limiting our understanding of model effectiveness. To address this, we evaluate emotional 3D animation generative models within a Virtual Reality (VR) environment, emphasizing user-centric metrics emotional arousal realism, naturalness, enjoyment, diversity, and interaction quality in a real-time human-agent interaction scenario. Through a user study (N=48), we examine perceived emotional quality for three state of the art speech-driven 3D animation methods across two emotions happiness (high arousal) and neutral (mid arousal). Additionally, we compare these generative models against real human expressions obtained via a reconstruction-based method to assess both their strengths and limitations and how closely they replicate real human facial and body expressions. Our results demonstrate that methods explicitly modeling emotions lead to higher recognition accuracy compared to those focusing solely on speech-driven synchrony. Users rated the realism and naturalness of happy animations significantly higher than those of neutral animations, highlighting the limitations of current generative models in handling subtle emotional states. Generative models underperformed compared to reconstruction-based methods in facial expression quality, and all methods received relatively low ratings for animation enjoyment and interaction quality, emphasizing the importance of incorporating user-centric evaluations into generative model development. Finally, participants positively recognized animation diversity across all generative models.
Abstract:We introduce PerfCam, an open source Proof-of-Concept (PoC) digital twinning framework that combines camera and sensory data with 3D Gaussian Splatting and computer vision models for digital twinning, object tracking, and Key Performance Indicators (KPIs) extraction in industrial production lines. By utilizing 3D reconstruction and Convolutional Neural Networks (CNNs), PerfCam offers a semi-automated approach to object tracking and spatial mapping, enabling digital twins that capture real-time KPIs such as availability, performance, Overall Equipment Effectiveness (OEE), and rate of conveyor belts in the production line. We validate the effectiveness of PerfCam through a practical deployment within realistic test production lines in the pharmaceutical industry and contribute an openly published dataset to support further research and development in the field. The results demonstrate PerfCam's ability to deliver actionable insights through its precise digital twin capabilities, underscoring its value as an effective tool for developing usable digital twins in smart manufacturing environments and extracting operational analytics.
Abstract:In this work, we report on the results and lessons learned from different disciplines while researching the loosely-defined problem of hearing a city. We present Xenakis, a tool for the musification of urban data, which is able to capture some features of a city's topology through the distribution of street orientations, and turn it into a (very) small piece of music, a loop, which can be used as building block for compositions. Besides providing complementary visual and auditory channels to interface with this data, we also allow the piping of \textit{midi} signals to other applications. This concept was developed by visualization researchers collaborating with musicians using design study methodologies in an open-ended way. Our results include musical tracks, and we take advantage of the scope of alt.VIS to communicate our research in a sincere, humorous, and engaging format.