Abstract:Semantic segmentation of outdoor street scenes plays a key role in applications such as autonomous driving, mobile robotics, and assistive technology for visually-impaired pedestrians. For these applications, accurately distinguishing between key surfaces and objects such as roads, sidewalks, vehicles, and pedestrians is essential for maintaining safety and minimizing risks. Semantic segmentation must be robust to different environments, lighting and weather conditions, and sensor noise, while being performed in real-time. We propose a region-level, uncertainty-gated retrieval mechanism that improves segmentation accuracy and calibration under domain shift. Our best method achieves an 11.3% increase in mean intersection-over-union while reducing retrieval cost by 87.5%, retrieving for only 12.5% of regions compared to 100% for always-on baseline.




Abstract:Within the common LLM use case of text revision, we study LLMs' revision of gendered role nouns (e.g., outdoorsperson/woman/man) and their justifications of such revisions. We evaluate their alignment with feminist and trans-inclusive language reforms for English. Drawing on insight from sociolinguistics, we further assess if LLMs are sensitive to the same contextual effects in the application of such reforms as people are, finding broad evidence of such effects. We discuss implications for value alignment.