



Abstract:Recent advances in LLMs have outpaced the computational and memory capacities of edge platforms that primarily employ CPUs, thereby challenging efficient and scalable deployment. While ternary quantization enables significant resource savings, existing CPU solutions rely heavily on memory-based lookup tables (LUTs) which limit scalability, and FPGA or GPU accelerators remain impractical for edge use. This paper presents T-SAR, the first framework to achieve scalable ternary LLM inference on CPUs by repurposing the SIMD register file for dynamic, in-register LUT generation with minimal hardware modifications. T-SAR eliminates memory bottlenecks and maximizes data-level parallelism, delivering 5.6-24.5x and 1.1-86.2x improvements in GEMM latency and GEMV throughput, respectively, with only 3.2% power and 1.4% area overheads in SIMD units. T-SAR achieves up to 2.5-4.9x the energy efficiency of an NVIDIA Jetson AGX Orin, establishing a practical approach for efficient LLM inference on edge platforms.
Abstract:Autonomous Delivery Vehicles (ADVs) are increasingly used for transporting goods in 5G network-enabled smart factories, with the compute-intensive localization module presenting a significant opportunity for optimization. We propose ACCESS-AV, an energy-efficient Vehicle-to-Infrastructure (V2I) localization framework that leverages existing 5G infrastructure in smart factory environments. By opportunistically accessing the periodically broadcast 5G Synchronization Signal Blocks (SSBs) for localization, ACCESS-AV obviates the need for dedicated Roadside Units (RSUs) or additional onboard sensors to achieve energy efficiency as well as cost reduction. We implement an Angle-of-Arrival (AoA)-based estimation method using the Multiple Signal Classification (MUSIC) algorithm, optimized for resource-constrained ADV platforms through an adaptive communication-computation strategy that dynamically balances energy consumption with localization accuracy based on environmental conditions such as Signal-to-Noise Ratio (SNR) and vehicle velocity. Experimental results demonstrate that ACCESS-AV achieves an average energy reduction of 43.09% compared to non-adaptive systems employing AoA algorithms such as vanilla MUSIC, ESPRIT, and Root-MUSIC. It maintains sub-30 cm localization accuracy while also delivering substantial reductions in infrastructure and operational costs, establishing its viability for sustainable smart factory environments.
Abstract:Multiple Signal Classification (MUSIC) is a widely used Direction of Arrival (DoA)/Angle of Arrival (AoA) estimation algorithm applied to various application domains such as autonomous driving, medical imaging, and astronomy. However, MUSIC is computationally expensive and challenging to implement in low-power hardware, requiring exploration of trade-offs between accuracy, cost, and power. We present MUSIC-lite, which exploits approximate computing to generate a design space exploring accuracy-area-power trade-offs. This is specifically applied to the computationally intensive singular value decomposition (SVD) component of the MUSIC algorithm in an orthogonal frequency-division multiplexing (OFDM) radar use case. MUSIC-lite incorporates approximate adders into the iterative CORDIC algorithm that is used for hardware implementation of MUSIC, generating interesting accuracy-area-power trade-offs. Our experiments demonstrate MUSIC-lite's ability to save an average of 17.25% on-chip area and 19.4% power with a minimal 0.14% error for efficient MUSIC implementations.