Abstract:We propose a novel method that reconstructs hair strands directly from colorless 3D scans by leveraging multi-modal hair orientation extraction. Hair strand reconstruction is a fundamental problem in computer vision and graphics that can be used for high-fidelity digital avatar synthesis, animation, and AR/VR applications. However, accurately recovering hair strands from raw scan data remains challenging due to human hair's complex and fine-grained structure. Existing methods typically rely on RGB captures, which can be sensitive to the environment and can be a challenging domain for extracting the orientation of guiding strands, especially in the case of challenging hairstyles. To reconstruct the hair purely from the observed geometry, our method finds sharp surface features directly on the scan and estimates strand orientation through a neural 2D line detector applied to the renderings of scan shading. Additionally, we incorporate a diffusion prior trained on a diverse set of synthetic hair scans, refined with an improved noise schedule, and adapted to the reconstructed contents via a scan-specific text prompt. We demonstrate that this combination of supervision signals enables accurate reconstruction of both simple and intricate hairstyles without relying on color information. To facilitate further research, we introduce Strands400, the largest publicly available dataset of hair strands with detailed surface geometry extracted from real-world data, which contains reconstructed hair strands from the scans of 400 subjects.