Abstract:Keyword spotting (KWS) is a key component of smart devices, enabling efficient and intuitive audio interaction. However, standard KWS systems deployed on embedded devices often suffer performance degradation under real-world operating conditions. Resilient KWS systems address this issue by enabling dynamic adaptation, with applications such as adding or replacing keywords, adjusting to specific users, and improving noise robustness. However, deploying resilient, standalone KWS systems with low latency on resource-constrained devices remains challenging due to limited memory and computational resources. This study proposes a low computational approach for continuous noise adaptation of pretrained neural networks used for KWS classification, requiring only 1-shot learning and one epoch. The proposed method was assessed using two pretrained models and three real-world noise sources at signal-to-noise ratios (SNRs) ranging from 24 to -3 dB. The adapted models consistently outperformed the pretrained models across all scenarios, especially at SNR $\leq$ 18 dB, achieving accuracy improvements of 4.9% to 46.0%. These results highlight the efficacy of the proposed methodology while being lightweight enough for deployment on resource-constrained devices.
Abstract:Crack segmentation can play a critical role in Structural Health Monitoring (SHM) by enabling accurate identification of crack size and location, which allows to monitor structural damages over time. However, deploying deep learning models for crack segmentation on resource-constrained microcontrollers presents significant challenges due to limited memory, computational power, and energy resources. To address these challenges, this study explores lightweight U-Net architectures tailored for TinyML applications, focusing on three optimization strategies: filter number reduction, network depth reduction, and the use of Depthwise Separable Convolutions (DWConv2D). Our results demonstrate that reducing convolution kernels and network depth significantly reduces RAM and Flash requirement, and inference times, albeit with some accuracy trade-offs. Specifically, by reducing the filer number to 25%, the network depth to four blocks, and utilizing depthwise convolutions, a good compromise between segmentation performance and resource consumption is achieved. This makes the network particularly suitable for low-power TinyML applications. This study not only advances TinyML-based crack segmentation but also provides the possibility for energy-autonomous edge SHM systems.
Abstract:Structural Health Monitoring (SHM) ensures the safety and longevity of infrastructure by enabling timely damage detection. Vision-based crack detection, combined with UAVs, addresses the limitations of traditional sensor-based SHM methods but requires the deployment of efficient deep learning models on resource-constrained devices. This study evaluates two lightweight convolutional neural network models, MobileNetV1x0.25 and MobileNetV2x0.5, across TensorFlow, PyTorch, and Open Neural Network Exchange platforms using three quantization techniques: dynamic quantization, post-training quantization (PTQ), and quantization-aware training (QAT). Results show that QAT consistently achieves near-floating-point accuracy, such as an F1-score of 0.8376 for MBNV2x0.5 with Torch-QAT, while maintaining efficient resource usage. PTQ significantly reduces memory and energy consumption but suffers from accuracy loss, particularly in TensorFlow. Dynamic quantization preserves accuracy but faces deployment challenges on PyTorch. By leveraging QAT, this work enables real-time, low-power crack detection on UAVs, enhancing safety, scalability, and cost-efficiency in SHM applications, while providing insights into balancing accuracy and efficiency across different platforms for autonomous inspections.