Abstract:This paper addresses the growing computational challenges of power grid simulations, particularly with the increasing integration of renewable energy sources like wind and solar. As grid operators must analyze significantly more scenarios in near real-time to prevent failures and ensure stability, traditional physical-based simulations become computationally impractical. To tackle this, a competition was organized to develop AI-driven methods that accelerate power flow simulations by at least an order of magnitude while maintaining operational reliability. This competition utilized a regional-scale grid model with a 30\% renewable energy mix, mirroring the anticipated near-future composition of the French power grid. A key contribution of this work is through the use of LIPS (Learning Industrial Physical Systems), a benchmarking framework that evaluates solutions based on four critical dimensions: machine learning performance, physical compliance, industrial readiness, and generalization to out-of-distribution scenarios. The paper provides a comprehensive overview of the Machine Learning for Physical Simulation (ML4PhySim) competition, detailing the benchmark suite, analyzing top-performing solutions that outperformed traditional simulation methods, and sharing key organizational insights and best practices for running large-scale AI competitions. Given the promising results achieved, the study aims to inspire further research into more efficient, scalable, and sustainable power network simulation methodologies.