Abstract:Urban region profiling, the task of characterizing geographical areas, is crucial for urban planning and resource allocation. However, existing research in this domain faces two significant limitations. First, most methods are confined to single-task prediction, failing to capture the interconnected, multi-faceted nature of urban environments where numerous indicators are deeply correlated. Second, the field lacks a standardized experimental benchmark, which severely impedes fair comparison and reproducible progress. To address these challenges, we first establish a comprehensive benchmark for multi-task urban region profiling, featuring multi-modal features and a diverse set of strong baselines to ensure a fair and rigorous evaluation environment. Concurrently, we propose UrbanMoE, the first sparse multi-modal, multi-expert framework specifically architected to solve the multi-task challenge. Leveraging a sparse Mixture-of-Experts architecture, it dynamically routes multi-modal features to specialized sub-networks, enabling the simultaneous prediction of diverse urban indicators. We conduct extensive experiments on three real-world datasets within our benchmark, where UrbanMoE consistently demonstrates superior performance over all baselines. Further in-depth analysis validates the efficacy and efficiency of our approach, setting a new state-of-the-art and providing the community with a valuable tool for future research in urban analytics
Abstract:Current dark image restoration methods suffer from severe efficiency bottlenecks, primarily stemming from: (1) computational burden and error correction costs associated with reliance on external priors (manual or cross-modal); (2) redundant operations in complex multi-stage enhancement pipelines; and (3) indiscriminate processing across frequency components in frequency-domain methods, leading to excessive global computational demands. To address these challenges, we propose an Efficient Self-Mining Prior-Guided Joint Frequency Enhancement Network (SPJFNet). Specifically, we first introduce a Self-Mining Guidance Module (SMGM) that generates lightweight endogenous guidance directly from the network, eliminating dependence on external priors and thereby bypassing error correction overhead while improving inference speed. Second, through meticulous analysis of different frequency domain characteristics, we reconstruct and compress multi-level operation chains into a single efficient operation via lossless wavelet decomposition and joint Fourier-based advantageous frequency enhancement, significantly reducing parameters. Building upon this foundation, we propose a Dual-Frequency Guidance Framework (DFGF) that strategically deploys specialized high/low frequency branches (wavelet-domain high-frequency enhancement and Fourier-domain low-frequency restoration), decoupling frequency processing to substantially reduce computational complexity. Rigorous evaluation across multiple benchmarks demonstrates that SPJFNet not only surpasses state-of-the-art performance but also achieves significant efficiency improvements, substantially reducing model complexity and computational overhead. Code is available at https://github.com/bywlzts/SPJFNet.