Abstract:Classifier-Free Guidance (CFG) is widely used to improve conditional fidelity in diffusion models, but its impact on sampling dynamics remains poorly understood. Prior studies, often restricted to unimodal conditional distributions or simplified cases, provide only a partial picture. We analyze CFG under multimodal conditionals and show that the sampling process unfolds in three successive stages. In the Direction Shift stage, guidance accelerates movement toward the weighted mean, introducing initialization bias and norm growth. In the Mode Separation stage, local dynamics remain largely neutral, but the inherited bias suppresses weaker modes, reducing global diversity. In the Concentration stage, guidance amplifies within-mode contraction, diminishing fine-grained variability. This unified view explains a widely observed phenomenon: stronger guidance improves semantic alignment but inevitably reduces diversity. Experiments support these predictions, showing that early strong guidance erodes global diversity, while late strong guidance suppresses fine-grained variation. Moreover, our theory naturally suggests a time-varying guidance schedule, and empirical results confirm that it consistently improves both quality and diversity.
Abstract:Diffusion models excel at generating high-quality, diverse images but suffer from training data memorization, raising critical privacy and safety concerns. Data unlearning has emerged to mitigate this issue by removing the influence of specific data without retraining from scratch. We propose ReTrack, a fast and effective data unlearning method for diffusion models. ReTrack employs importance sampling to construct a more efficient fine-tuning loss, which we approximate by retaining only dominant terms. This yields an interpretable objective that redirects denoising trajectories toward the $k$-nearest neighbors, enabling efficient unlearning while preserving generative quality. Experiments on MNIST T-Shirt, CelebA-HQ, CIFAR-10, and Stable Diffusion show that ReTrack achieves state-of-the-art performance, striking the best trade-off between unlearning strength and generation quality preservation.