Abstract:Public resource allocation involves the efficient distribution of resources, including urban infrastructure, energy, and transportation, to effectively meet societal demands. However, existing methods focus on optimizing the movement of individual resources independently, without considering their capacity constraints. To address this limitation, we propose a novel and more practical problem: Collaborative Public Resource Allocation (CPRA), which explicitly incorporates capacity constraints and spatio-temporal dynamics in real-world scenarios. We propose a new framework called Game-Theoretic Spatio-Temporal Reinforcement Learning (GSTRL) for solving CPRA. Our contributions are twofold: 1) We formulate the CPRA problem as a potential game and demonstrate that there is no gap between the potential function and the optimal target, laying a solid theoretical foundation for approximating the Nash equilibrium of this NP-hard problem; and 2) Our designed GSTRL framework effectively captures the spatio-temporal dynamics of the overall system. We evaluate GSTRL on two real-world datasets, where experiments show its superior performance. Our source codes are available in the supplementary materials.




Abstract:The air quality inference problem aims to utilize historical data from a limited number of observation sites to infer the air quality index at an unknown location. Considering the sparsity of data due to the high maintenance cost of the stations, good inference algorithms can effectively save the cost and refine the data granularity. While spatio-temporal graph neural networks have made excellent progress on this problem, their non-Euclidean and discrete data structure modeling of reality limits its potential. In this work, we make the first attempt to combine two different spatio-temporal perspectives, fields and graphs, by proposing a new model, Spatio-Temporal Field Neural Network, and its corresponding new framework, Pyramidal Inference. Extensive experiments validate that our model achieves state-of-the-art performance in nationwide air quality inference in the Chinese Mainland, demonstrating the superiority of our proposed model and framework.
Abstract:Node importance estimation problem has been studied conventionally with homogeneous network topology analysis. To deal with network heterogeneity, a few recent methods employ graph neural models to automatically learn diverse sources of information. However, the major concern revolves around that their full adaptive learning process may lead to insufficient information exploration, thereby formulating the problem as the isolated node value prediction with underperformance and less interpretability. In this work, we propose a novel learning framework: SKES. Different from previous automatic learning designs, SKES exploits heterogeneous structural knowledge to enrich the informativeness of node representations. Based on a sufficiently uninformative reference, SKES estimates the importance value for any input node, by quantifying its disparity against the reference. This establishes an interpretable node importance computation paradigm. Furthermore, SKES dives deep into the understanding that "nodes with similar characteristics are prone to have similar importance values" whilst guaranteeing that such informativeness disparity between any different nodes is orderly reflected by the embedding distance of their associated latent features. Extensive experiments on three widely-evaluated benchmarks demonstrate the performance superiority of SKES over several recent competing methods.