Abstract:Low-rank adaption (LoRA) is a representative method in the field of parameter-efficient fine-tuning (PEFT), and is key to Democratizating the modern large language models (LLMs). The vanilla LoRA is implemented with uniform ranks, and the recent literature have found that properly allocating ranks on the LLM backbones results in performance boosts. However, the previous rank allocation methods have limitations since they rely on inexplanable and unreliable importance measures for the LoRA ranks. To address the above issues, we propose the ShapLoRA framework. Inspired by the explanable attribution measure Shapley Value, we combine the sensitivity-based measures with the idea of coalitions in the collaborative games among LoRA ranks, and propose a more explainable importance measure called Shapley sensitivity. In addition, we optimize the workflow of the existing works by: (a) calculating Shapley sensitivity on a separate validation set; (b) Setting up the allocating-retraining procedures for fair comparisons. We have conducted experiments on various challenging tasks, and the experimental results demonstrate that our ShapLoRA method can outperform the recent baselines with comparable tunable parameters.\footnote{Codes and fine-tuned models will be open-sourced to facilitate future research.




Abstract:Vertical Federated Learning (VFL) enables collaborative learning by integrating disjoint feature subsets from multiple clients/parties. However, VFL typically faces two key challenges: i) the requirement for perfectly aligned data samples across all clients (missing features are not allowed); ii) the requirement for joint collaborative inference/prediction involving all clients (it does not support locally independent inference on a single client). To address these challenges, we propose X-VFL, a new VFL framework designed to deal with the non-aligned data samples with (partially) missing features and to support locally independent inference of new data samples for each client. In particular, we design two novel modules in X-VFL: Cross Completion (XCom) and Decision Subspace Alignment (DS-Align). XCom can complete/reconstruct missing features for non-aligned data samples by leveraging information from other clients. DS-Align aligns local features with completed and global features across all clients within the decision subspace, thus enabling locally independent inference at each client. Moreover, we provide convergence theorems for different algorithms used in training X-VFL, showing an $O(1/\sqrt{T})$ convergence rate for SGD-type algorithms and an $O(1/T)$ rate for PAGE-type algorithms, where $T$ denotes the number of training update steps. Extensive experiments on real-world datasets demonstrate that X-VFL significantly outperforms existing methods, e.g., achieving a 15% improvement in accuracy on the image CIFAR-10 dataset and a 43% improvement on the medical MIMIC-III dataset. These results validate the practical effectiveness and superiority of X-VFL, particularly in scenarios involving partially missing features and locally independent inference.