Abstract:As hybrid electric vehicles (HEVs) gain traction in heavy-duty trucks, adaptive and efficient energy management is critical for reducing fuel consumption while maintaining battery charge for long operation times. We present a new reinforcement learning (RL) framework based on the Soft Actor-Critic (SAC) algorithm to optimize engine control in series HEVs. We reformulate the control task as a sequential decision-making problem and enhance SAC by incorporating Gated Recurrent Units (GRUs) and Decision Transformers (DTs) into both actor and critic networks to capture temporal dependencies and improve planning over time. To evaluate robustness and generalization, we train the models under diverse initial battery states, drive cycle durations, power demands, and input sequence lengths. Experiments show that the SAC agent with a DT-based actor and GRU-based critic was within 1.8% of Dynamic Programming (DP) in fuel savings on the Highway Fuel Economy Test (HFET) cycle, while the SAC agent with GRUs in both actor and critic networks, and FFN actor-critic agent were within 3.16% and 3.43%, respectively. On unseen drive cycles (US06 and Heavy Heavy-Duty Diesel Truck (HHDDT) cruise segment), generalized sequence-aware agents consistently outperformed feedforward network (FFN)-based agents, highlighting their adaptability and robustness in real-world settings.
Abstract:The Controller Area Network (CAN) protocol is a standard for in-vehicle communication but remains susceptible to cyber-attacks due to its lack of built-in security. This paper presents a multi-stage intrusion detection framework leveraging unsupervised anomaly detection and supervised graph learning tailored for automotive CAN traffic. Our architecture combines a Variational Graph Autoencoder (VGAE) for structural anomaly detection with a Knowledge-Distilled Graph Attention Network (KD-GAT) for robust attack classification. CAN bus activity is encoded as graph sequences to model temporal and relational dependencies. The pipeline applies VGAE-based selective undersampling to address class imbalance, followed by GAT classification with optional score-level fusion. The compact student GAT achieves 96% parameter reduction compared to the teacher model while maintaining strong predictive performance. Experiments on six public CAN intrusion datasets--Car-Hacking, Car-Survival, and can-train-and-test--demonstrate competitive accuracy and efficiency, with average improvements of 16.2% in F1-score over existing methods, particularly excelling on highly imbalanced datasets with up to 55% F1-score improvements.
Abstract:Automated driving systems face challenges in GPS-denied situations. To address this issue, kinematic dead reckoning is implemented using measurements from the steering angle, steering rate, yaw rate, and wheel speed sensors onboard the vehicle. However, dead reckoning methods suffer from drift. This paper provides an arc-length-based map matching method that uses a digital 2D map of the scenario in order to correct drift in the dead reckoning estimate. The kinematic model's prediction is used to introduce a temporal notion to the spatial information available in the map data. Results show reliable improvement in drift for all GPS-denied scenarios tested in this study. This innovative approach ensures that automated vehicles can maintain continuous and reliable navigation, significantly enhancing their safety and operational reliability in environments where GPS signals are compromised or unavailable.
Abstract:Traffic flow prediction is a big challenge for transportation authorities as it helps in planning and developing better infrastructure. State-of-the-art models often struggle to consider the data in the best way possible, intrinsic uncertainties, and the actual physics of the traffic. In this study, we propose a novel framework to incorporate travel times between stations into a weighted adjacency matrix of a Graph Neural Network (GNN) architecture with information from traffic stations based on their data availability. To handle uncertainty, we utilized the Adaptive Conformal Prediction (ACP) method that adjusts prediction intervals based on real-time validation residuals. To validate our results, we model a microscopic traffic scenario and perform a Monte-Carlo simulation to get a travel time distribution for a Vehicle Under Test (VUT) while it is navigating the traffic scenario, and this distribution is compared against the actual data. Experiments show that the proposed model outperformed the next-best model by approximately 24% in MAE and 8% in RMSE and validation showed the simulated travel time closely matches the 95th percentile of the observed travel time value.